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Abstract 

A (K, E) disperser graph G = (VI, V2, E) is a bipartite 
graph wit.h the property that for any subset A E VI of 
cardmality K, the neighbors of A cover at least 1 - E 
fraction of t,he vertices of V2. Such graphs have many 
applicat.ions in derandomization. Saks, Srinivasan and 
Zhou presented an explicit construction of (K = 2k, C) 
disperser graphs G = (V = [2”],W,E) with an almost 
optimal degree D = poZy(n,C1), for every E > nn(l). 
We extend t.heir result for any parameter k < n. 

1 Int,roduct.ion 

A disperser is a sparse graph with strong random-like 
properties. As such, explicit dispersers have numerous 
applicat.ions in derandomization (many of them appear- 
ing in the excellent survey paper by Nisan [Nis96]). The 
quesstion whether explicit constructions of such graphs 
do esist attracted much research in the last decade [SipSS, 
Zuc90, Zuc91, NZ93, SZ94, SSZ95, Zuc96]. Saks, Srini- 
vasan and Zhou [SSZ95] showed an almost optimal dis- 
perser construction for certain parameters. In thii pa- 
per we show how to extend their work to give explicit 
constructions for the whole range of parameters. 

Definit,ion 1.1 (disperser) A bipartite graph G = (V = 
[iV = 2n], W = [Ml, E) with a left degree D is a (K, e) 
disperser, if any subset A C V of cardinality K has more 
t,han (1 - E)M distinct neighbors in W. 
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Given E and c (as functions of the growing parameter 
n) we would like to have the degree as small as possible, 
while maintaining M as large as possible. It is known 
that any non-trivial disperser must have degree D that 
is at least D 2 Q(log(N)$) and the size of the right 
hand side M is at most M < G( $$) [RTS97]. Indeed, 
if we build such a graph by choo&g D independent 
neighbors for each v E V, we get an optimal disperser 
with tight degree D (up to a multiplicative factor) and 
maximal number of right hand side vertices (again, up 
to a multiplicative factor). 

Saks, Srinivasan and Zhou [SSZ95] showed a dis- 
perser construction with degree D = poZy(n,@) for 
sets of size K = 2” with k 2 no(l). Their work was 
based on earlier results and a new combinatorial con- 
struction of a small family of segmentat.ions (that will 
be described later). We simplify the SSZ combinato- 
rial construction, giving a simpler analysis with better 
bounds. We use the new family of segmentations to 
build the disperser graph in much the same way as is 
done in [SSZ95], but we prove the correctness of the con- 
struction using the terminology of [Ta-961, which resulbs 
in a simpler proof with tighter bounds. 

Theorem I For every constant y < 1 , e > 2+’ and 
any k 5 n, there is an esplicit (K = 2E.,e) disperser 
G = (v = pr = -p],w = [M = 2k-pol~(losn,los(3))],E) 
with degree D < poZy(n, $). 

Although the degree of our disperser is almost op- 
timal, the entropy-loss is not. In an ideal graph we 
can hope that any set of K vertices of degree D covers 
R(KD) vertices. In the disperser we presented, how- 
ever, the right hand size has size M = K/2p”~v~o~(nl, 
For convenience we measure the log of this loss, i-e,, the 
entropy loss of a disperser is log(K) + log(D) - log(M). 
The [SSZ95] disperser has nn(l) entropy loss, while our 
disperser has poZy(log(n), log( 4)) entropy loss. The rea- 
son we achieve much smaller entropy loss is connected 
to the fact that we have good dispersers for any pa- 
rameter k, and uses the esistence of a good estrac- 
tor presented in [Ta-961. Yet, even the entropy loss 
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we achieve is still away from the optimal one which is 
only 1oglog(~) + C(l), and reducing the min-entropy 
ioaa to the optimal is an important open problem with 
many applications (e.g. for the construction of explicit 
a-expanding graphs and depth 2 super-concentrators, 
ace the survey paper of [Nis96]). 

The paper is constructed as follows: in Section 2 we 
give definitions and a few preliminaries. In Section 3 
we present the new small family of segmentations, in 
Section 4 we show how to build from it a structure that 
in particular implies the existence of good dispersers. 
Finally, in Section 5 we discuss some open problems. 

2 Proliminaries 

In the following we give formal definitions for the dii- 
fcrent objects we are going to handle later. However, to 
get a wider picture and a better understanding of the 
relationships between these different objects we recom- 
mend the reader to look at the survey paper of [Nis96]. 

We are going to work with distributions. A proba- 
bility distribution X over A, is a function X : A I+ [0, l] 
a,t, &e~X(a) = 1, We measure the amount of random- 
ncas in the distribution by considering the min-entropy. 

Definition 2,l (min-entropy) The min-entropy of a dis- 
tribution X is H,(X) = min,(- log, X(a)), 

In general we would like to build an extractor which 
is a function that extracts randomness from a random 
source X having high minentropy. It is easy to see that 
no such deterministic function exists, so we are forced 
to use some (hopefully few) truly random bits. We say 
@r, v) extracts randomness from X if the distribution 
of B(X, V), obtained by picking D according to the dis- 
tribution X (we denote this by 2 E X) and y uniformly 
at random (we denote this as y E U) and computing 
J?@J, v), is c close to the uniform distribution U. 

Definition 2.2 (statistical difference) Two distributions 
X and Y over the same space A have statistical distance 
d(X,Y) = $1x - YI1 = &EAlX(U) - Y(a)l. 

Deli&ion 2,3 (extractor for a class C) Let C be a set of 
distributions X over (0, l}n. A function E : (0, l}n x 
WY t--b WP is an e extractor for C, if for any 
distribution X E C the distribution of E(X, Vt) (i.e. the 
distribution over (0, l}m obtained by choosing z E X, 
and 21 or/ (0, l}t and computing E(z, y)) is e-close to 
the uniform distribution U, over (0, 1)“‘. 

The ultimate goal is finding an optimal extractor 
for all distributions having k min-entropy, which is still 
open for most cases [Nis96]. However, it turns out that 
the problem is much simpler when we restrict ourselves 
to random sources having more structure: 

Definition 2.4 [CG88] (block-wise source) Suppose X is 
a distribution over (0, l}“, and ‘IT is a partition of [l..n] 
into 1 consecutive blocks. Define the induced random 
variable XT which is the result of the random variable 
X when restricted to the i’th block of ‘IT. Thus, X = 
XT0 . . . o XT where the XT are possibly correlated. 

WesayXisa(n,.zr,..., q) block-wise source, if for 
=Yx =x1 o... xlEXandany15i<Iwehave 

H,(xyxiR_1=xi-1,..., x+x1)>& 

Many times we omit the partition T and simply say that 
X is a @I,..., a) block-wise source. 

Nisan and Zuckerman [NZ93] and later Srinivasan 
and Zuckerman [SZ94] showed how to extract random- 
ness from block-wise sources: 

Definition 2.5 (a block-wise extractor) A ((zl, . . . , z~), E) 
block-wise extractor is a function E : (0, l}n x (0, 1): I+ 
(0, l}m that is an extractor for the set of all (n; 21,. . . , q) 
block-wise sources. E may depend on ?r, and when we 
want to emphasize this we write E,. 

Definition 2.6 (Explicit Extractor): We say an extrac- 
tor E : (0, 1)” x (0, 1)’ H (0, 1)” is explicit, if E(x, y) 
can be computed in time polynomial in the input length 
I4 + I4 = n + t. We say a block-wise extractor is ex- 
plicit, if given r, x, y, E,(x, y) can be computed in time 
polynomial in n + t. 

Nisan and Zuckerman [NZ93] showed a nice block- 
wise extractor that was later improved by Srinivasan 
and Zuckerman [SZ94], yielding: 

Fact 2.1 [SZ94] There is a constant C,, > 1 s.t. for 
any b, e > 0,Z 2 1, zi > C&‘b there is an explicit 
(ST; %i,. . . , zi; e) block-wise extractor En : (0, l}nx (0, 1)’ I+ 
(0, 1)“’ with m = R(C&-b) output bits and t = C(log(n)f 
b + log($)) truly random bits. 

Extractors are much stronger than dispersers. In 
fact the relationship between extractors and dispersers 
is much the same as between one-sided error and two- 
sided error computations. Next, we are going to weaken 
the notion of an extractor to that of a somewhere ran- 
dom extractor. We start with a definition of a some- 
where random source, taken with some changes from 
[Ta-961: 

Definition 2.7 [Ta-961’ (somewhere random source) B = 
Br o... o Bb is a b-block (m, e,r]) somewhere random 
source, if each B; is a random variable over (0, l}m, and 
there is a random variable Y over [O..b] s.t.: 

‘The definition here is a bit different to the one appearing 
in [Ta-961. There the conditions are Prob(Y = 0) < 7 and for 
any i, d((&lY = i), Urn) 5 6. The two definitions are actually 
equivalent. To see that our definition implies the one in [Ta-961, 
define Y’(z) to be Y(z) if Y(z) = i and Ptob(Y = i) > f, and 0 
otherwise. 
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l For any i E [l..b]: Prob(Y = i) 2 f d (I((&IY = 
,i), Urn) 5 E. 

0 Prob(Y = 0) 5 rj. 

We call 1’ an (E,v) selector for B. 

We t,hen define a somewhere random estract.or to be 
a fun&ion whose output is a somewhere random source. 

Definition 2.S (somewhere random eractor) Let E : 
(0, l}” x {O,l}” I+ ({O,l}“)* be a function. Given a 
distribut,ion X on (0, l}n we can define the distribution 
E(S, Vt) = B1 o . . . o & obt,ained by picking x E X, y E 
& and computing E(x, y). 

We say E is a (k, E, 17) somewhere-random e&actor 
if for any distribut,ion X wit.h H,(X) 2 L, E(X, Ut) = 
B1 0 . . . o Bb is a b-block (m., E, q) somewhere random 
source. When E = 9 we say E is an (m,~) somewhere- 
random estra&or. 

Given a random source with k min-entropy an es- 
bractor is forced to output a single distribution that is 
close to uniform. A somewhere random estractor can 
instead output many distributions, with the guarantee 
t,hat. one of which (but may be only one) is uniform. 
Thus, a somewhere random est,ractor is much closer in 
spirit to a disperser. However, it is still stronger than a 
disperser because the requirement that one of the distri- 
but.ions is close to uniform is stronger than the require- 
ment. t,hat. we cover many vertices. 

Lemma 2.1 Let 9 < fr. Let D : {O,l}n x (O,l}t I+ 
((0, 1)“)” be a V:, ~4 somewhere random extractor. 
Suppose 0(x, y) = &(x, y) 0.. . o &,(2,Y). Define the 
bipart.ite graph G = (V = {O,l}“,TV = {O,l}m, E) 
where (v, w) E E iff t.here is some 1 < i 5 b and some 
-, E (0, l}” s.t. 20 = Da(v, z). Then G is a (K = 2”, e) 
I;isperser. 

Proof: Let. X C 1’ be of cardinality 2”. let Y = 
Y&z) be t,he selector function for D. Since 9 < 3 
there must be some ,i > 0 s.t. Prob(Y = i) 1 t. Hence, 
4 (WXW I y = i) , Lrm) 5 E. Thus, even when 
we rest.rict ourselves only to 2 E X and z E (0, l}t s.t. 
Y(x, x) = i, t,hese edges induce a dist.ribution which is e 
close to the uniform distribution over TV. In particular, 
t,hese edges miss at most an E fraction of W. Therefore, 
in parbicular, t,he set of all neighbors of X, r(X) miss 
ab most an e fraction of IV. cl 

In Se&ion 4 we const,ruct good somewhere random 
estract,ors, and combining it. with the above Iemma we 
get Theorem 1. 

3 A Small Family of Segmentations 

In t.his section we strengthen a combinatorial lemma ap- 
pearing in [SSZ95]. Loosely speaking, the lemma claims 

there is a small family of segmentations of [l..n] into 
few blocks I, s.t. for any possible way of dividing weight 
among these n point.s, there is at least one segment.a- 
tion in the family s.t. any block in the segmentat,ion 
has high weight. 

Definition 3.1 (segmentations) We say x partitions [l..n] 
into I blocks if it produces I segments B1 = [Ml], B2 = 
[bl + l..bz], . . . , BI = [&I + la]. We call T a segmen- 
tation. 

A family F of segmentations of [l..n] into 1 blocks 
is (E,[zl =Z,...,Z~ = z])-good for any weight function 
p : [l..n] I+ [0, w] if for any such p with &p(i) 2 1; there 
is at least one segmentation 7r E F s.t. 7r partitions 
[l..n] into blocks BI,. . . , Bl s.t. for every 1 5 i 5 I t-he 
total weight of vertices in Bi is at least xi. 

The nest lemma is a generalization of the lemma ap- 
pearing in [SSZ95]. The proof presents a somewhat sim- 
pler algorithm, with a simpler analysis and bet,ter pa- 
rameters. The idea behind the construction is, though, 
essentially the same as in [SSZSS]. 

Lemma 3.1 Suppose $ - 2 log(n) 1 w for some positive 
values k, 1, n, z, w. Then there is a family F of segmen- 
tations of [l..n] into 1 blocks that is (L, [xl = 2,. . . (4 = 
z])-good for any p : [l..n] I+ [O,w], and such that the 
size of F is at most n2. 

Proof: W.l.0.g we can assume n is a power of two, 
for otherwise we can just add dummy zero weights. We 
take a balanced binary tree over ,n leaves. The leaves of 
the subtree whose root is 2, cover a consequent subset of 
[l..n] which we denote by &m(v). 

Construction of F : 

l Take all possible paths from the root to a leave. 
l For each pat.h ~1, . . . , ~,s(~) take all subsets of 

sizel-1 of {2ll,...,wl+)}. 
l Each such subset {vi,, . . . , ‘Uil-l} of 1 - 1 ver- 

tices determines a partitioning of [l..n] into 
I blocks as follows: each vi,: puts a partition 
point on the middle point of dom(v+). 

Clearly there are n possible paths, and each pnt.h 
can have at most 2*0g(n) = n subsets. Thus I the 
number of partitions in F is at most n2, 

F is good : 

Let p : [l..n] I+ [O..w] be s.t. Cpi 2 1;. Under p the 
weight of a vertex w, weight(w), is the sum of the 
weights of vertices in dam(u). Let us concentrate 
on a distinguished path phcavY: the path that start,s 
at the root, and each time goes to the heavier son. 
Let us call a vertes w on phcavv good if both the 
meight.s of his left and right sons are at least u”. 
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Claim 3.1 There are at least I- 1 good vertices in 
PlLC4VV~ 

Proof: The weight of the root is k. When we 
encounter a good vertex we choose the heavy son 
and therefore we decrease the weight by at most 
half, When we encounter a bad vertex we lose at 
most x weight. If there are t good vertices then 
the leaf must have weight at least $ - log(n)z. 
F, any leaf has weight at most w. Thus, 
v - log(n)2 5 w. However, we started with a big 
&ough k, namely, w 5 $--log(n)x and hence t 3 1. 

0 

Thus, these 1 - 1 good vertices define a partition 
into 1 blocks s.t. each of them has weight at least 
x0 

cl 

A similar analysis for the case where the different 
blocks have different weights give: 

Lemma 3.2 Suppose $ - Cf,,zi 2 w for some positive 
values k, 1, n, xi, w. Then there is a family F of segmen- 
tations of [l,,n] into 1 blocks that is (k, [a,. . . ,zlJ)-good 
for any p : [l,.n] I+ [0, w], and such that the size of F is 
at most n2. 

The proof is similar to the proof of lemma 3.1 and 
appears in the appendix. 

4 Efficient Somewhere random extractors 

4,l The basic lemma 

Imagine being an extractor. You are given a string 
m E (0, 1)” that has large min-entropy. The first ques- 
tion you might ask yourself is “which of the bits of 
X are “more” random?“. It turns out that instead of 
measuring the surprise of the i’th bit in the random 
source X, an even better idea is to consider the sur- 
prise of the i’th bit in the given string, i.e., to consider 

= Prob(Xt = z:i 1 Xi-l, . . . ,21) as our measure of 
!rrprise. This idea originates in the work of [NZ93]. 

When taking this as our measure of surprise we can 
see that if X has high min-entropy, almost all strings 
z E X have many surprising bits. This can be viewed 
as giving weights to the n bits, the weight of the i’th 
bit corresponds to its amount of “surprise”, that add up 
together to something large. At the bit level we do not 
know which bit has high weight. However, at the block 
level we can use the small family of segmentations, and 
almost by definition, one of the segmentations in our 
small family must be good in the sense that it parti- 
tions [l,.n] into surprising blocks, This is the same as 
saying that the resulting blocks form a somewhere ran- 
dom source, which we already know to handle. Thus 

trying all the possible segmentations (and there aren’t 
too many of them) we know one of them will work and 
give us an almost uniform distribution. This idea, of try- 
ing all possible segmentations from a small fixed family, 
comes directly from the [SSZ95] paper, but the imple- 
mentation here is more direct than in [NZ93, SSZ95], 
resulting in a simpler and stronger analysis. 

Lemma 4.1 Suppose 

. 5 - C&zi > w = log(?), and 

l There is an explicit ((zi = zr - log(e), . . . , rl = 
q -log(y), E) block-wise extractor E, : (0, 1)” x 
{o,l}t I-) (0, l}m. 

Then there is an explicit (k,c) somewhere-random 
extractor E : (0, 1)” x (0, l}t ‘+ ((0, l}m)iFi. 

ProoE 
From Lemma 3.2 we know there exists an explicit 

family F of segmentations of [l..n] into 1 blocks that is 
(k[Zl,..., q])-good for any p : [l..n] H [0, w], and the 
size of the family F is at most n2. 

Let X be any random source over (0, I}” with H&X) 2 
kandleta:EX. 

Algorithm : 
Choose y uniformly from (0, l}L. 
Any 7r E F partitions [l..n] into I segments. For 
any such 7r let B, = En@, y). The output is the 
IFI blocks Br for any r E F. 

Correctness : 
We call an z E X “rare” if there is some i s.t. 
PrOb(Xi = Xi 1 Zi-l,.--,21) < $. It is easy t0 

verify that Prob(z is rare) < n$ = E. If z is 
rare we let Y = 0 (i.e., we failed). 

For a non-rare zr E X denote Qi dgf Prob(Xi = 
Zi 1 Xi-1 = Z&l, a.. , Xl = 21). Clearly fl f& = 
Prob(X = z) 5 2-k. Defme p = p(z) : [l..n] c) 
[&WI by Pi = log(&). It can be easily checked that 
Cpi 1 k, and 0 5 pi. F’urthermore, since z is not 
rare Pi(z) 5 lOg(3) = w. Therefore, there is at 
least one partition in F that is good for p, and let 
us fix such one x. Let Y = Y(z) = 1. Note that 
the weight function p = p(z) and the segmentation 
Y = Y(z) depend on z. 
Denote by Xr the distribution of X when restricted 
to B;, the i’th segment of ?r. Similarly for a string 
b E (0, l}*, br denotes the i’th block of b under the 
segmentation ‘in. We now show that: 

Claim 4.1 For any 6 > 0, if Prob(Y = R) 16 then 
UXF 0 . ..oX~)]Y=~)isa(zr-log(+) ,..., zl- 
log($)) block-wise source. 
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Proof: For 1 I i 5 1 let by,. . . ,bT be such that 
f,hey can be estended to some b with Y(b) = rIT. 

Since Y(b) = r we have t,hat under the weight func- 
t,ion p = p(b), the weight of Bf is at least zi. Con- 
sequently: 

Prob(X~ = bf 1 XIX = b?, . . .,XTsl = b;.,) = 

j-JjEBz Prob(X:,- = bjlXI = bl,. . . , Xj-1 = bjel) = 

IljeBl Qj = 2 
-‘>EB~PJ < 2-Z’ 

- 

Therefore, 

Prob(XT = bflx;” = b;, . . .,X’i”wI = b:-‘_,,Y = r) 

< Prob(S:=b; 1 A-:=b; ,..., ST-,=a:-‘_,) 
Prob(Y=lr) 

5 2-2; 
-if- 

And t.he claim follows. 
Therefore, if we pick 6 = fi, we get that when- 
ever Prob(Y = n) > fi we have that (XT o . . . o 
x+7 1 Y = 77) is a (zi,..., zi) block-wise source 
(-! = q “a - log($)), and therefore (B, I Y = n) 
is E close to uniform. And the correct,ness follows. 

El 

4.2 Plugging specific parameters 

For the basic lemma to work we need good block-wise 
e&actors, and as ment.ioned in Section 2 good block- 
wise est.ractors do esist. Combining the combinatorial 
construct’ion of Lemma 3.2 (or even Lemma 3.1) and the 
block-v&e estractor of [SZ94] (Fact 2.1) with Lemma 
4.1, and plugging t,he parameters .Z = O(log log(n)) , t = 
O(log(n) + log( f )) and 1; = poZ$og(n) log( 4) we get: 

Corollary 4.2 There is a (I: = poZy(logn,log($)), O(E)) 
somewhere random extractor B : {O,l}” x {O,l>” I-) 
((0, l}1°c2 ,),’ mith t = O(log(n) + log(i)). 

In general if we &eat 1 as a parameter (which might 
be smaller bhan loglog or bigger) we get: 

Theorem 2 There is a (/i = o(2o(‘)(log~n+log(~))), O(e)) 
somewhere random estractor D : (0, l}” x {O,l>” I+ 
WY 11 21 log(n) ?a2 ) with t = O(log(n) + log($)). 

If we take 6 5 llpoZy(n), we get a useful some- 
where random &ractor for any minentropy, even t.hose 
that are smaller than log2 ‘n ! Given a source with 
2O(‘) log(n) entropy, we can invest the optimal number 
of O(log(n) + log(f)) truly random bits, and get in re- 
t.urn blocks mit,h 2’1og n, somewhere quasi-random bits. 
As we saw, t.his in part.icular implies good dispersers 
for any min-ent,ropy. The ent.ropy loss in the system is, 
however, not optimal. 

4.3 Composing somewhere random estractors 

Now we show that if we can obtain log2 n quasi-random 
bit.s then we can use them to further estract all of the 
remaining min-entropy in the source using the estractor 
in [Ta-961. 

Algorithm 4.1 Suppose 

e El : (0, l}nx (0, ljdl c) ((0, l}dz)’ is a (1~1, <I,Q)- 
somewhere-random estractor, 

e E2 : {O,l}” x {0,1}d2 I-) (0, l}ma is a (/:a,&)- 
eAractor 

Define E2 eEI : (0, l}n x (0, l}dl I+ ((0, l}m2)P11 a.9 
follows: 

Input : a E (0, l)“, 9.1 E (0, I}% 

output : 
Forl<i<nandl<j<l, 

l Let d be the j’th block in the output of El (Q[i,n], TI), 
And, 

l Let zi = JwQ[l,i-l]~ d>* 

The output contains nl blocks, where the (i, j) out- 
put block is zi. 

Theorem 3 (Implicit in [Ta-961) Suppose El, ES are as 
above. Then for every safety parameter s > 0, El 0 Es 
is an (kl + ,& + s, [I + 52,O(n(ql+ 2-“j3))- somewhere 
random extractor. 

In Theorem 2 we obtained a somewhere random es- 
tractor outputting blocks of length poZgZog(n). In [Ta-961 
it was shown that with that amount of truly random bits 
we can estract all of the remaining min-entropy: 

Fact 4.1 [Ta-961 For every constant T < 1 , e > 2-“‘, 
and every 1; = 1;(n) there is an esplicit (I;, E) estractor 
E : (0, l}n x {(),l}P”kh(‘+~~6(~) ti (0, 1)“. 

Putting it together we get: 

Theorem 4 For every constant y < 1, E 1 2-nY and any 
L 5 n, there is an explicit (L, O(E)) somewhere random 
extractor D : (0, l}nx{O, l}t I+ ((0, 1}‘~--po~rJ(10Cn~‘oc(~)))n3 
with t = O(log(n) + log($)). 

5 Further Work 

In this paper we constructed efficient somewhere ran- 
dom estractors for sources having any min-entropy. In 
particular this reduces the problem of finding esplicit 
general edractors, to that of finding esplicit estractom 
for somewhere random sources, for if we cm do t-he later 
than by our result me can also do the former. Estrac- 
tors for somewhere random sources are called “mergers” 
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in [Ta-SG], where some explicit constructions with non- 
optimal degree are presented. It will be very interesting 
(and ueeful) to have a direct (and hopefully efficient) 
construction for mergers. 

Another open problem is reducing the entropy loss 
to O(log(n)), As stated earlier this has some beautiful 
consequences (e.g. for the construction of explicit depth 
2 superconcentrators, see [Nis96]). It seems that Theo- 
rem 2 gives a lead for making progress on this problem, 
as it supplies an optimal somewhere-random extractor 
working for very low min-entropies and retrieving a (rel- 
atively) large amount of randomness. It seems that once 
we have good somewhere random mergers we might use 
Theorem 2 to further reduce our min-entropy losses. 
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A A Small Family of Segmentations 

We prove Lemma 3.2. 
ProoE 

The construction of F is exactly as it is in Lemma 
3.1. Hence, clearly, IF] 5 n2. Next we prove that F is 
good. 

F is good : 

Let p : [l..n] t) [O..zu] be s.t. Bpi 3 Ic. As before we 
concentrate on the distinguished path phecrvU: the 
path that starts at the root and each time goes to 
the heavier son. We go along the path phea,,rJ from 
the root to the leaf and we label the vertices as 
being good or bad. As before, good vertices will be 
chosen as partition points, and the partition point 
is laid in the middle of the domain they cover. Our 
main claim will be that if Ic is big enough there are 
always enough good points on the path pheclvtJ. 

Suppose we labeled the first i vertices ~1,. . . , ~i-1 
of the path pheavy as being good or bad and de- 
clared t of them as being good yielding t partition 
points {pr , . . . ) pt}. Denote by q the middle point 
of dOm(Vi), and by u and b (o < q < b) the parti- 
tion points in {PI,. . . , pt} that are closest to q (if 
no partition point smaller (or bigger) than q exists 
we take the end point). Let us denote by t, the 
number of partition points greater than q ( t, 1 0), 
and similarly tl is the number of partition points 
smaller than q. We call vi good if: 

l vi+1 (the heavy son of vi) is the left son of vi 
and weight([rql..b)) 2 q-t,, or 

l vi+1 (the heavy son of vi) is the right son of v; 
ad weGM[a..lqJ)) 3 .a,+~. 

The t partition points (~1,. . . ,pt} partition [l..n] 
into t + 1 blocks. Furthermore, t of these blocks 
Bl, . . . , Bt will never be partitioned again. We call 
these blocks inactive. At each time there is only one 
active block. Also notice that the inactive blocks 
cover a prefix and a suflix of [l..n], and therefore 
we know exactly what their final index should be. 
Let US denote by kj the weight of the j’th block 
from the left. We HOW that kj > Zj. Next we 
show that at any stage the remaining weight k - 
C&weight(Bj) is big. 

Lemma A.1 After finding t good vertices k-C&Weight(Bi) i 
iS at least $ - C$l%j - C$=l-t,+l%j- 

ProoE By induction on t. 

The case t = 0 (tr = t, = 0) is trivial. 



For t = 1 we look at. the first good vertes v = vi. 
Since v = vi is the first good vertex, we get that 
the left and right flanks (the prefis and suffix out- 
side dam(v)) have weight less than q and zr re- 
spectively. W.1.o.g let us assume vi+1 is the left 
son of vi. Then Br = [q..b], and since v is good it 
has weight at least rr. However, its weight is also 
bounded by above by T +zr, since it is com- 
posed of t.he lighter half [+.c] of &n(v) that can 
cont.ribute at most zu(dom(v))/2), and the remain- 
ing region [c..n.] that weights less than zr. Hence, 
the remaining weight is at least as required. 
Now, assume for t and let us prove for t + 1. Again, 
let us consider t.he t’th good vertex v = Vi, Say 
CJ is t,he middle point of &m(v) and that a and b 
(a < Q < b) are the partition points in {pr, . . . ,pt} 
that. are closest to Q (if no partition point smaller 
(or bigger) t.han g esists we take the end point). 
W.1.o.g we assume vi+1 is t.he right son of vi. 

By induct,ion we know that even ignoring B1, . . . , & 
we st.ill have at least $ minus the sum of the corre- 
sponding zj. Let us now find the weight of the new 
added block Bt+l. By an argument similar to the 
case t = 1, we see that its weight is at most half 
of what was left, plus a new .Zj corresponding the 
indes of t.he new block. Thus, what is left when we 
remove t.he weight of Bt+l is at least as stated. Cl 

Now suppose we were able to find only t < 1 - 1 
good partition point,s. This means that we have 
t inactive blocks BI,. . . , B,, tl covering a prefix 
[l..a], and t, covering a posted [b..n]. The remain- 
ing block B = [a + l..b - l] is unable to support a 
new block neither in t.he left, nor in the right. So, 
w(B) c zt,+r +q_tp +w. However, by Lemma A.l, 
w(B) is at. least $ - C;=‘=,Zj - C,!=~-,,+~Z~. Thus, 
C~xi + w > 8 2 $. A contradiction. 
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