
Explicit, Almost Optimal, Epsilon-Balanced Codes∗

Amnon Ta-Shma

The Blavatnik school of Computer Science

Tel-Aviv, Israel

amnon@tau.ac.il

ABSTRACT
The question of �nding an epsilon-biased set with close to optimal

support size, or, equivalently, �nding an explicit binary code with

distance
1−ε

2
and rate close to the Gilbert-Varshamov bound, at-

tracted a lot of attention in recent decades. In this paper we solve

the problem almost optimally and show an explicit ε-biased set

over k bits with support size O(k

ε2+o(1)
). This improves upon all

previous explicit constructions which were in the order of
k2

ε2
,
k
ε3

or
k5/4

ε5/2
. The result is close to the Gilbert-Varshamov bound which

is O(k
ε2

) and the lower bound which is Ω(k

ε2 log 1
ε

).

The main technical tool we use is bias ampli�cation with the

s-wide replacement product. The sum of two independent samples

from an ε-biased set is ε2 biased. Rozenman and Wigderson showed

how to amplify the bias more economically by choosing two sam-

ples with an expander. Based on that they suggested a recursive

construction that achieves sample size O(k
ε4

). We show that am-

pli�cation with a long random walk over the s-wide replacement

product reduces the bias almost optimally.

CCS CONCEPTS
• Theory of computation → Pseudorandomness and deran-
domization; Random walks and Markov chains; Expander
graphs and randomness extractors; Error-correcting codes;

KEYWORDS
Zig-Zag product, Wide replacement product, Eps-bias

ACM Reference format:
Amnon Ta-Shma. 2017. Explicit, Almost Optimal, Epsilon-Balanced
Codes. In Proceedings of 49th Annual ACM SIGACT Symposium on
the Theory of Computing, Montreal, Canada, June 2017 (STOC’17),
14 pages.
DOI: 10.1145/3055399.3055408

1 INTRODUCTION
The Gilbert-Varshamov (GV) bound states that for every δ > 0,

there exists a family {Cn} of codes such that Cn has length n,

relative distance δ and relative rate 1 − H(δ) − o(1), where H

∗
A preliminary version of this paper appears in [23].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’17, Montreal, Canada
© 2017 ACM. 978-1-4503-4528-6/17/06. . . $15.00

DOI: 10.1145/3055399.3055408

is Shannon’s entropy function. Finding an explicit construction

approaching the Gilbert-Varshamov bound is one of the most im-

portant open problems in coding theory. For codes with distance

close to half, the Gilbert-Varshamov bound shows that random

linear codes of length n = O(k/ε2) are w.h.p. [n, k, 1−ε
2
n]2 codes.

Finding an explicit construction attaining this bound is, again, a

major open problem.

One popular approach trying to build good binary codes close

to the GV bound, is by starting with a code over a large alphabet

and concatenating it with a good binary code. Concatenating the

Reed Solomon code (RS) with the Hadamard code gives one of the

constructions in AGHP with support size about O(n
2

k2
) [3]. Con-

catenating RS with the Wozencraft ensemble gives the Justensen

code [13] with constant relative distance and constant relative rate.

Starting with an AG code and concatenating with Hadamard over a

�eld of size O(1
ε2

) gives a construction with about O(k
ε3

) support

size. Taking the Hermitian code below the genus over a smaller

�eld and concatenating with Hadamard gives the construction in

[7] with support size O((k
ε2

)5/4).

All of the above bounds fall short of achieving the GV bound

which is O(k
ε2

), and this is due, in part, to the expensive concate-

nation step. The attainable parameters when concatenating with

RS as the outer code are captured by the Zyablov bound, which for

distance
1−ε

2
gives code lengthO(k

ε3
) (see [2, Section 1]). Similarly,

concatenating with any high genus AG code cannot attain the GV

bound for distance close to half [6, Section 4].

Naor and Naor [15], and later Alon et al. [2], suggested to solve

the problem using ampli�cation and pseudo-randomness. The idea

is to start with a binary error-correcting code that has moderate

distance (say, some constant relative distance) and amplify it to a

binary error correcting code with a higher distance (say, close to

half). This was done by Naor and Naor [15], and later Alon et al.

[2], using expanders, or more generally dispersers. This approach

also gives binary error correcting codes of length n, dimension k
and distance

1−ε
2

with n = O(k
ε3

). Nevertheless, Alon et al. show

that for a certain non-binary �eld size their construction lies above

the Zyablov bound.

We now digress to give an equivalent representation of the prob-

lem in which it is easier to see what is ampli�ed in the construction.

We de�ne two related problems:

• The �rst problem is �nding an [n, k, 1−ε
2
n]2 binary code in

which the relative weight of every non-zero codeword is in the

range [1−ε
2
, 1+ε

2
]. Such codes are called ε-balanced.

• The second problem is �nding a set S ⊆ {0, 1}k such that for ev-

ery non-empty subset α ⊆ [k], if we look at the random variable

obtained by sampling s = (s1, . . . , sk) ∈ {0, 1}k uniformly at

238

STOC’17, June 2017, Montreal, Canada A. Ta-Shma

random from S and outputting

⊕
i∈α si, the resulting bit is al-

most uniform with bias at most ε. Such a set is called an ε-biased
sets.

Finding an ε–balanced code is a (slightly) harder problem than

�nding a code with distance
1−ε

2
. Yet, the status of ε-balanced

codes is similar to that of [n, k, 1−ε
2
n]2 codes. For the upper bound,

n = O(min
{
k
ε2
, 2k
}

) (where the probabilistic method gives non-

explicit [n, k]2 ε-balanced codes withn = O(k
ε2

), and the Hadamard

code gives a perfectly balanced code with n = 2k). The best

lower bound is n = Ω(min
{

k

ε2log 1
ε

, 2k
}

), see [3, Section 7]. Both

bounds match the corresponding bounds for [n, k, 1−ε
2
n]2 codes

[3]. Furthermore, the code constructions presented above give not

only codes with relative distance
1−ε

2
but also ε–biased codes.

It is well known and easy to see that the second problem (of

�nding an ε–biased set) is equivalent to the �rst problem (of �nding

an ε–balanced code). In fact, ε-biased sets are just ε-balanced codes

in a di�erent guise: if S is an ε–biased set over {0, 1}k with support

size n, then the n× k matrix G that has the elements of S written

in its rows, is a generating matrix for an ε–balanced code. The

opposite is also true (and easy). Thus, a construction of an ε–biased

set over {0, 1}k with support size n is actually a construction of a

generating matrix for an [n, k, 1−ε
2

]2 linear code that is ε-balanced.

Thus, amplifying the distance of a code from relative distance

1−ε1
2

to relative distance
1−ε2

2
corresponds to amplifying the bias

of an epsilon–biased set from ε1 to ε2.

There is a straightforward (and expensive) way to amplify bias.

Suppose S is an ε–biased set over {0, 1}k with support size n and

let D be the distribution over {0, 1}k obtained by sampling a ran-

dom element of S uniformly at random. Let Dt
be the distribution

obtained by sampling t independent samples v1, . . . , vt from D

and outputting

∑t
i=1 vi ∈ {0, 1}

k
, where the sum is in Fk2 . It is a

simple exercise to show that Dt
is εt-biased (see De�nition 2.1 for

the de�nition of bias of a distribution).

Rozenman and Wigderson suggested to replace two independent

samples with pseudo-random samples [8]. Speci�cally, they sug-

gested to sample an edge from an (n,D, λ) expander, and use the

two endpoints as the two samples. I.e., suppose we start with an ε-

biased set S over {0, 1}k with support size n, andG is an (n,D, λ)
expander with n vertices. We sample an edge (i, j) ∈ E from the

expander. We then output zi ⊕ zj , where z` is the `’th element in

the support of S. Rozenman and Wigderson use the expander mix-

ing lemma to prove that the new distribution is O(λ+ ε2) biased.

Thus, if λ is small, we have reduced the bias from ε to O(ε2) while

increasing the support size from n to the slightly larger support

sizeDn. With this building block at hand they suggest to start with

some εinit–biased set Sinit for some constant εinit (e.g., Justensen

code) and by repeated edge sampling, each time from a larger ex-

pander, they obtain a construction with support size about O(k
ε4

).

Rozenman and Wigderson did not publish their results and the

results appear credited to them in Bogdanov’s lecture notes of a

2012 complexity class [8].

In this paper we wish to extend this technique and bring it closer

to optimal.

1.1 RandomWalks are Parity Samplers
A natural suggestion extending the above results and ideas is to

take a random walk (RW) of length t on the expander G. Suppose

as before we have some εinit–biased set Sinit over {0, 1}k with

constant bias εinit and linear support size n = O(k). For the

ampli�cation process we use an (n,D, λ) expanderG and associate

the n vertices of the expander with the n elements in the support of

Sinit. The ampli�cation itself is done by sampling a random path

of length t in G and outputting the sum of the elements associated

with vertices on the path. Speci�cally, if the path is v0, . . . , vt ∈ [n]

and vi is associated with the element zi ∈ {0, 1}k in the support of

Sinit, then the output is

∑t
i=0 zi ∈ {0, 1}

k
where the summation

is in Fk2 .

But does this natural suggestion actually work?

To check this we follow the Rozenman and Wigderson frame-

work and �x an arbitrary non-trivial test α ⊆ [k]. The result of the

test is ∑
j:j∈α

(

t∑
i=0

vi)j =

t∑
i=0

∑
j:j∈α

(vi)j ,

where the summation is modulo 2, and (v)j is the j’th bit of v ∈
{0, 1}k . De�ne the set

B =

{
v ∈ V = [n] |

∑
j:j∈α

vj = 1

}
.

We see that what we need to check is whether with probability

close to half a random path of length t on G falls into B an odd
number of times. Indeed, does this happen?

Random walks over expanders are often used for sampling.

Gilman [11] proved that as long as λ is small enough, for every

set B ⊆ V the number of times we visit B in a random walk of

length t over an expander is very close to the expectation, and the

probability we deviate much from the expectation is similar to the

probability t completely random variables deviate from the expec-

tation. However, in our case we are not interested in the number of

times we fall into the set B but rather in the parity of that number.

O�hand, there is no reason to believe an expander walk is a good

replacement with respect to this measure (the parity of the number

of times we fall into a set).

To appreciate the above point consider what happens with pair-

wise independent sampling, or even t–wise independent sampling.

If we sample t+ 1 vertices v0, . . . , vt t-wise independently from

V , the number of times we fall into a set B is indeed concentrated

around the expectation. Yet, the parity may be completely biased.

For example sampling (v0, . . . , vt) such that

∑t
i=0 vi = 0 in Fk2 ,

gives a t-wise independent distribution, but obviously, for any test

α ⊆ [k] we have that

∑
j:j∈α

∑t
i=0(vi)j = 0 because

∑t
i=0 vi =

0. Thus even though a random sample hits B with about the right

expectation, it completely fails the parity test.

Yet, doing the analysis we �nd out that quite surprisingly a

random walk over an expander constitutes a good replacement

to true randomness with regard to this parity measure, and so,

informally speaking, random walks over expanders are good “parity

samplers”. We �nd this fact highly surprising.

Speci�cally, a random walk of length t reduces the bias from

εinit to (εinit + 2λ)t/2. Taking εinit ≈ 2λ and λ ≈ 2√
D

(which

239

Explicit, Almost Optimal, Epsilon-Balanced Codes STOC’17, June 2017, Montreal, Canada

is similar to the behavior of a Ramanujan graph), we see that the

support size isO(kDt) while the bias is ε = (8√
D

)t/2. In particular

ifD is a large enough constant, sayD ≥ 81/α
, thenD

t
2

(1
2
−α) ≤ 1

ε
.

Therefore, the support size is of order k ·Dt = k

ε4+O(α) .

Thus, so far we have simpli�ed the construction, and we are

perhaps surprised by the proof, but nevertheless we seem to hit

the same wall and we have not improved the parameters of the

construction.

1.2 Why Do We Get the O(k
ε4) Bound?

We now take a closer look at the proof. As we said before, following

Rozenman and Wigderson, we �rst �x a non-trivial test α ⊆ [k].
The test partitions the vertices of the graph G to two sets: those

which index elements in the support that give 0 on the test α, and

those which give 1. Let us denote these sets by S0 and S1 respec-

tively. As we explained before we need to estimate the probability

a random walk on G falls into S1 an odd number of times.

Stated algebraically, we need to analyze the operator (ΠG)t,
whereG is the transition matrix of the expander, and Π is a diagonal

matrix in the standard basis of the vertices, giving value 1 to vertices

in S0 and −1 to those in S1. It turns out that ‖ΠG‖ = 1, because

if we let 1 be the normalized all-one vector, then (ΠG)1 = Π1
which is a normalized vector with ±1 entries, and thus has norm

1. However, ‖ΠGΠG‖ ≤ εinit + 2λ (see Theorem 3.1(3)) and this

implies that one in every two steps works for us, and in t steps the

bias becomes (εinit + 2λ)t/2.

One could hope that

∥∥(ΠG)4
∥∥

drops down faster than

‖ΠGΠG‖2, but it seems this might not be always the case. To

see that, decompose the space to V‖ = Span {1} and its orthogo-

nal complement V⊥, where 1 is the all-one vector (or, equivalently,

the uniform distribution over V). Then V‖ and V⊥ are invariant

under G and furthermore, G1 = 1 while ‖Gv‖ ≤ λ‖v‖ for every

v ∈ V⊥. We also know how Π acts on 1 - it moves it to a vector

with ±1 entries, where the sign encodes membership in S1. We do

not have, however, any control on the action of Π on V⊥.

Now consider what happens when we apply ΠGΠG on the

vector 1. G1 = 1 so the �rst step on G is wasted. Then Π might

move 1 close to a perpendicular vector (and this indeed happens

because the part that is sent to V‖ is proportional to the bias and

is small, see the proof of Theorem 3.1(3)). This is followed by the

second application ofGwhich shortens the vector byλ (because it is

in the perpendicular space) and keeps it in the perpendicular space

(because the perpendicular space is invariant under G). Finally we

apply Π again. The problem is that this second application of Π
might map the vector we currently hold close to the uniform vector

1. If this happens then, indeed, every second application of G is

wasted and we are doomed to get the
k
ε4

support size.

1.3 The Replacement Product
We now take a pause for the moment from our problems and take

a detour to discuss the replacement product. Suppose we have two

graphs:

• An (n,D1, λ1) graphG(V1 = [n], E1) withn vertices. We think

of n as being large (e.g., going to in�nity) while D1 is relatively

small, e.g., D1 might be logarithmic in n or a constant. We call

G the outer graph.

• A second (D1, D2, λ2) graph H(V2 = [D1], E2). Notice that

|V2| = D1 the degree of G, thus H is much smaller than G. We

think of H as the inner graph.

The replacement product G r©H has vertex set V1 × V2. We

can visualize this as if for every vertex v we replace the D1 edges

leaving v with D1 vertices of the form (v, i) for i ∈ V2 = [D1].
We call these vertices the cloud of v. We place a copy of H on each

cloud. We also add an “out-going” edge from (v, i) that goes where

the original edge of G went. To be more precise, if the i’th edge

leaving v went to w and the j’th edge leaving w is v (remember

that the graph is undirected) then we add an “inter-cloud” edge

((v, i), (w, j)) to the replacement product graph.

The replacement product was analyzed in the seminal paper

[19] along with the related zig-zag product. In the zig-zag product

one takes the replacement product graph and replaces all edges

with edges connecting the endpoints of paths of length 3 that

are composed of an intra-cloud step followed by an inter-cloud

step and then another intra-cloud step. In general, we will use

the terminology zig-zag product when paths are shortened, and

replacement product when they are not. We keep, however, the

convention that a step on the replacement product is an intra-cloud

step on the H component followed by an inter-cloud deterministic
step.

1

The analysis shows that, roughly speaking, both products inherit

the number of vertices from the large graph G, and the degree

and spectral gap from the small graph H . It is relatively easy to

construct high-degree expanders. Thus, these products reduce the

task of �nding an expander on many vertices to the task of �nding

an expander on fewer vertices, and therefore one can obtain an

explicit recursive way to construct good expanders (see [19] and

also [5]).

The products have added bene�ts beyond what one can (cur-

rently) get from other expander constructions:

• Capalbo et al. [9] used the zig-zag product to construct an explicit

expander with edge expansion approaching the degree.

• Reingold [18] used the zig-zag product in the breakthrough result

that undirected connectivity is in Logspace, where the zig-zag

product is used to transform an arbitrary input graph to a good

expander (see also [20]).

• Dinur [10] used the zig-zag product in her “combinatorial” proof

of the PCP theorem.

In all these applications the zig-zag product is more than just

a combinatorial replacement to an algebraic good expander, and

speci�c properties of the product are used.

Alon et al. [4] observed a close connection between the replace-

ment product and the semi-direct product in group theory. If G

1

In the literature it is customary to de�ne the replacement product as the D1 + 1
regular graph de�ned above, where each vertex has D1 intra-cloud edges and one

inter-cloud edge leaving (and entering) it. If we want to view this structure as a graph,

forgetting about the division of the edges to two types, we need to balance the weight

on inter-cloud edges to be the same as intra-cloud edges. Instead, in this paper, a

random walk will remember the edge types, and walk alternately on intra-cloud and

inter-cloud edges. A cleaner way to view this is that the replacement graph is a D1-

regular graphs, where the i’th neighbor of a vertex is obtained by going to the i’th
neighbor in the cloud, and then proceeding (deterministically) over the inter-cloud

edge. I.e., we “shorten” GH steps.

240

STOC’17, June 2017, Montreal, Canada A. Ta-Shma

and H are groups and H acts on G, one can de�ne the semi-direct

product of G and H as the group with elements G×H and prod-

uct (g1, h1) · (g2, h2) = (gh2
1 g2, h1h2). Alon et al. proved that

with the appropriate choice of generators, the Cayley graph of

the semi-direct product is the zig-zag product. One key feature of

the semi-direct product is that the value of the H coordinate is

independent of the G coordinate. This property is essential for our

construction and we capture it with the condition thatG has a local

inversion function - see De�nition 2.7.

1.4 Protecting From the Action of Π

Going back to our problem, our next attempt is to protect the in-

structions for the de-randomized walk from the action of Π, because

we have very little control on the behavior of Π. To achieve that

we use the replacement product. As before we have G and H and

the set of vertices in the graph is V (G)× V (H). We now do the

following:

• We associate the support of the εinit–biased set Sinit with the

vertices of V (G). This in particular means that the linear opera-

tor Π de�ned before acts on the G component alone and leaves

the H component untouched.

• We take a t long random walk on the replacement product. I.e.,

we start at some v0. We take an intra-cloud edge, followed by

the (deterministic) inter-cloud edge to get v1. We repeat that t

times until we get the path v0, . . . , vt. We let zi ∈ {0, 1}k be

the element in the support of Sinit associated with vi, and we

output

∑t
i=0 zi.

In the analysis we now have three operators: H that acts on

the H component and describes the intra-cloud dynamics, G that

is a deterministic step (in fact a permutation on the vertices) and

describes the inter-cloud step, and Π that acts on the G component

alone and changes the sign according to membership in B. A step

in the t long random walk corresponds to ΠGH , i.e., �rst an intra-

cloud step, then the inter-cloud deterministic step, and then Π gives

a ±1 value based on the result of the test α.

Doing the analysis we get the same parameters as before (in fact,

slightly worse parameters, as we cannot associate the vertices ofH
with the εinit biased-set Sinit). The analysis, again, shows one in

every two steps can be wasted. To see that we let V‖ be the vector

space containing all vectors that are uniform inside each cloud

(algebraically this means the vector is a product vector v1 ⊗ v2

with v2 being uniform over V2 = V (H)) and V⊥ be its orthogonal

complement. A bad example is, e.g., a parallel vector in V‖. On a

parallel vector the �rst H step is wasted and ΠG moves the vector

close to the perpendicular space (intuitively this happens because

the part that is sent to V‖ is proportional to the bias and is small.

This, of course, requires a proof and is a special case of Theorem

6.3). The secondH application shortens the vector by λ2 and keeps

it in the perpendicular space, then the second ΠG step might move

the vector close to a parallel vector in V‖.
At �rst, this looks very similar to the situation we had before

and it may seem we have gained nothing. However, this is not

necessarily true. This is because Π is almost entirely out of our

control (it is determined by the testα and there are about 2k possible

tests). In contrast, G and H are chosen by the algorithm. Thus, the

fact that Π does not meddle with the H component (which is what

determines the next step on the path) gives us, at least potentially,

the hope that our situation would be better if we choose G and H
appropriately.

In fact Ben-Aroya et al. [6] had to solve exactly the same problem,

but in a situation without the Π operator. For that [6] de�ned the

s-wide walk. Applying the same technique in our more complicated

scenario (with the Π operator) indeed works as long asΠ does not act
on theH vertex. Thus, the main purpose of using the replacement

product here is to separate between the action of Π and the pseudo-

random machinery that determines the path.

We now explain the technique used by [6] and how it is applied

in our case to give the improved result we seek.

1.5 Using the s-wide Replacement Product
We now use a technique developed in Ben-Aroya et al. [6]. The

idea, informally speaking, is to make sure that if a certain step in

the random walk does not work for us, then many following steps

work well. If we succeed in that and can arrange, say, that in every

s steps s−O(1) steps work for us, then we should get an ε–biased

set with support size
k

ε
2+O(1

s
)
.

To make the idea work we �rst notice that each step costs D2

(because the inter-cloud steps are deterministic) and may reduce

the norm by λ2, and bothD2 and λ2 are independent of |V2|. Thus,

we could have made V2 larger, seemingly without changing the

cost.
2

Thus, we choose to make |V2| = Ds
1 for some parameter s

(and for a �rst reading we recommend the reader to think of s as

a large constant) and we think of an element v ∈ V2 = [D1]s as

having s blocks v1, . . . , vs each being a [D1] instruction. We need

to associate elements v = (v1, . . . , vs) ∈ V2 = [D1]s with labels

in [D1] and for concreteness let us say that at step i the label πi(v)
associated with v is determined by the element vi mod s ∈ [D1].
We call this kind of random walk the s–wide random walk on the
replacement product graph.

We can carry on the same analysis as before. Again, ‖ΠG‖ = 1
and the parallel vectors v⊗1 are problematic elements. The crucial

point is that now if we are in a parallel vector, then we are uniform

on the cloud and therefore have log(|V2|) = s log(D1) uniform

bits. In theory, we could have hoped that H mixes the bits so well

that the labels we get in the next s steps are completely uniform
and independent. Ben-Aroya et al. prove that this is indeed the

case, w.h.p., with a random degree D2 graph H . Thus, if we fail

once, we can expect the next s′ = s−O(1) steps form a perfect

length s′ random walk on G! Notice that each step only costs

logD2 bits, but buys us a perfect random walk on G that worths

log(D1) � log(D2) bits. Hence when we get to be in a parallel

vector we indeed lose an H step, but we gain much more from the

fact that we invest logD2 bits and they worth us logD1 bits. The

technical instantiation of this is Theorem 6.3 about the action of

the operator on parallel vectors.

If we resort to �nding H by a brute force search we have to take

H to be constant sized (or slightly more) and we get support size

k
ε2+α

for arbitrarily small constant α. An anonymous referee to the

STOC 2008 submission of [6] told us how to replace the brute-force

2

In our application we associate the n elements with V1 alone, so we “lose” V2 , which

means that we cannot make V2 as large as we wish. Still, we do not pay much for

making V2 larger.

241

Explicit, Almost Optimal, Epsilon-Balanced Codes STOC’17, June 2017, Montreal, Canada

search for a good H with an explicit construction. The idea is to

take H to be a Cayley graph over an Abelian group ZsD1
, and do

the walk on the s-wide product G r©H such that in the i’th step

we walk according to the (i mod s) coordinate of the V2 = ZsD1

element (see Section 2.4). The fact that the Cayley graph respects

the vector space structure of ZsD1
translates to a simple proof that

H is good for us (see Section 7). The only potential drawback is that

Abelian Cayley graphs require poly-logarithmic degree, but this is

insigni�cant in our setting. Working with a nicely structured H
simpli�es the construction, makes it more concrete and also enables

us to use larger graphsH thereby optimizing the parameters better.

We are grateful for the anonymous referee for his/her suggestions.

1.6 The Parameters
Taking the approach outlined above we prove Theorem 1.2. To get

some intuition about the parameters notice that the support size is

|V1|·|V2|·Dt
2 = n·Ds

1·Dt
2 which is dominated byn·Dt

2 = O(kDt
2).

We want to make this quantity close to
k
ε2

and so we want Dt
2 to

be as close as possible to
1
ε2

. As we explained before, in an ideal

situation (that does not exist) we would lower the norm by λ2 at

each of the t steps. If, furthermore, λ2 would have been
1√
D2

(which

is again impossible) we would get a perfect result since ε would be

(1
λ2

)t which would be D
−t/2
2 , and then Dt

2 would be
1
ε2

.

Although the perfect world does not exist we get close to it with

some imperfections:

(1) λ2 is not
1√
D2

but rather
2√
D2

or larger. This is unavoidable

since the number of vertices in H is Ds
1 ≥ Ds

2 which is much

larger than the degree D2 [16]. This forces D2 to be large

enough so that the factor of 2 is tiny, and this is the reason why

we need to enforce D2 ≥ 2s (and, in fact, we need D2 to be

slightly larger).

(2) Another imperfection is that we put the elements in the support

of Sinit over the vertices V1 of G alone, while the graph has

vertex set V1×V2, and the �nal support size is |V1×V2|×Dt
2.

Thus we lose a factor of |V2| = Ds
1 ≥ Ds

2 in the support size.

This forces us to take s small compared to t, and is the reason

why we enforce t ≥ s
α

.

(3) Finally, when we take a walk of length s not all s steps “work”

for us, and we can prove only that s− 4 work for us. In fact, if

we look at s steps alone, there are always scenarios where we

lose at least one step, so it seems we cannot hope to improve

the s−4 to anything better than s−1. This forces 1 (or 4) to be

tiny compared to s, and is the reason why we enforce s ≥ 1
α

.

Putting this together, and roughly speaking,D2 ≥ 2s andDt
2 ≥

2st ≥ 2s
2/α ≥ 21/α3

.Dt
2 should also be poly(1

ε
). Thus we see that

we should expect something like log 1
ε

= 1
α3 , i.e., α = 1

(log 1
ε

)1/3
.

Indeed, the actual bound that we prove is not far from that and

gives α = Θ((
log log 1

ε

log 1
ε

)1/3). Speci�cally,

Theorem 1.1. For every constant α > 0, there exists an explicit
construction that given k and ε > 0 constructs an ε–biased set over
{0, 1}k with support size O(k

ε2+α
).

If we want to be precise about the parameters we get, then:

Theorem 1.2. There exists an explicit construction that given k
and ε > 0 constructs an ε–biased set over {0, 1}k with support size

k · 22log 1
ε

+O((log 1
ε

)2/3(log log 1
ε

)1/3)
(1)

Said di�erently, the support size is n = O(k
ε2+α

) for

α = O(
(log 1

ε
)2/3(log log 1

ε
)1/3

log 1
ε

) = O((
log log 1

ε

log 1
ε

)1/3).

We remark that when ε ≤ 1

k
√

log k
, the construction of [3] that

has support size O(k
2

ε2
) already achieves the support size stated

in Eq (1). Hence we can assume, w.l.o.g., that ε ≥ 1

k
√

log k
. For a

�rst reading we recommend the reader to think of ε as being some

polynomial in
1
k

.

1.7 Concluding Remarks and Thoughts
s-wide random walks were introduced in Ben-Aroya et al. [6]. The

walk in [6] is of length exactly s and the walk is shortened to the

two endpoints of the path as is done in the zig-zag product. [6]

show the resulting graph is almost Ramanujan. In this work we

do not shorten the path and instead look at the coherent walk

on the replacement product graph (see also footnote 1).
3

We also

consider longer walks, and allow intermediate operations on a

vertex (like the operator Π in our case) as long as they do not break

the independence of the H coordinate. We believe this generalized

setting is quite natural, and we expect to see more applications

where such random walks are useful.

Looking back at the construction outlined above, it seems the

key property allowing the existence of a good H (in both the exis-

tential proof and the explicit construction) is the fact that in our

construction the H coordinate is “protected” from the action of

both G and Π. This is manifested in the requirement that G has a

local inversion function (to protectH from the action ofG) and the

choice to associate the support of the εinit–biased set Sinit with

V1 alone (and thus Π ignores the H coordinate). This key property

is also featured in the semi-direct product where H evolves inde-

pendently of the G coordinate. We are not aware of any previous

use of such “semi-direct” random walks.

We conclude with an intriguing open problem. As we explained

before an explicit ε-biased construction over {0, 1}k with support

size n is equivalent to the explicit construction of the generating
matrix of a [n, k, 1−ε

2
]2 balanced code. Thus, we have explicitly con-

structed the generating matrix of an error-correcting code that has

distance close to half and almost optimal rate. We stress, however,

that our construction does not give an explicit decoding algorithm.

Finding such a decoding algorithm is a natural important open

problem.

2 PRELIMINARIES
2.1 Epsilon-biased Sets

De�nition 2.1. (ε-bias) Let Υ be a distribution over {0, 1}k . For

α ∈ {0, 1}k de�ne:

Biasα(Υ) =

∣∣∣∣ Pr
s∈Υ

(〈α, s〉 = 0)− Pr
s∈Υ

(〈α, s〉 = 1)

∣∣∣∣ ,
3

To be precise, this is true except that the walk also needs to remember the index mod

s of the step.

242

STOC’17, June 2017, Montreal, Canada A. Ta-Shma

where the inner product is taken over F2. We call α a linear test.
Denote Bias(Υ) = maxα 6=∅Biasα(Υ). We say Υ is ε—biased if

Bias(Υ) ≤ ε.

De�nition 2.2. (ε–biased set) A multi-set S over {0, 1}k with

support size n is a function S : [n]→ {0, 1}k . S is ε-biased if the

distribution Υ = S(Un), obtained by picking i ∈ [n] uniformly

at random and outputting S(i), is ε–biased. A family {Sk}k∈N
is (n, k, ε)–biased if for every k, Sk : [n = n(k)] → {0, 1}k is

ε = ε(k) biased. We call S : [n]→ {0, 1}k the index function of

Υ.

De�nition 2.3. (explicit and fully explicit sets) A family {Sk}k∈N
of Sk : [n] → {0, 1}k is explicit, if there exists an algorithm that

outputs all elements in the support of Sk in time poly(n, k). The

family is fully explicit if there exists a polynomial time algorithm

that on input k, i ∈ [n] and j ∈ [k], outputs the j’th bit of Sk(i) in

polynomial time in the input length, i.e., in time poly(log(n+ k)).

As we said before, ε-biased sets are just ε-balanced codes in

a di�erent guise: the rows of a matrix whose columns generate

an ε-balanced code form an ε-biased set, and vice versa. In terms

of parameters, an [n, k]2 ε-balanced code is equivalent to an ε-

biased set S ⊆ {0, 1}k of size n. Thus, in error correcting codes

terminology, explicit means one can output the generating matrix of

the code in time poly(n), while fully explicit means one can output

each entry of the generating matrix in time poly-logarithmic in the

dimension.
4

We use several basic ε–biased constructions.

Lemma 2.4. (AGHP) [3] For every ε = ε(k) there exists a fully
explicit family {Sk} that is (n, k, ε)–biased with support size n ≤
2k2

ε2
.

Lemma 2.5. (Justensen) [13] For every constant α < H−1(1
2
) ≈

0.11 and every constant c large enough, there exists a fully explicit
family {Sk} that is (n = ck, k, 1 − 2α)–biased. Notice the linear
support size n = ck.

We also need an explicit ε–biased set with support size
k

poly(ε)
.

We could have used [15] with support size about
k
ε3

, but instead

we use the construction with a random walk over expanders. There

are three reasons for that: �rst, the construction is simpler, second,

it is a good preparation for the construction we present, and third,

we need the random-walk case for analyzing the s-wide walk.

Theorem 2.6. There exists a constant c such that for every ε =
ε(k) there exists an explicit family {Sk} that is (n, k, ε)–biased with
support size n ≤ O(k

εc
).

We present the proof in Section 3. We remark that we only claim

explicitness rather than full explicitness.

2.2 Rotation Maps
Following [19] we represent undirected regular graphs using rota-
tion maps as we explain now. Let G be an undirected D–regular

graph G = (V,E). We assume every vertex v has a labeling of the

D edges adjacent to it with the labels {1, . . . , D} such that every

4

Sudan, in his lecture notes [22], calls this property “locally poly-time constructible”.

label appears once. Notice that each edge (a, b) is labeled twice,

once by a and once by b, and these labels might be di�erent. Let

vG[i] denote the i’th neighbor of v according to the labeling of G.

The labeling induces what is a called the rotation map of the graph

G, RotG : V × [D]→ V × [D], de�ned by

RotG(v, i) = (w, j) ⇐⇒ vG[i] = w and wG[j] = v.

In words, the i’th neighbor of v in G is w, and the j’th neighbor of

w inG is v. Notice that if RotG(v, i) = (w, j) then RotG(w, j) =
(v, i), so Rot is a permutation on V × [D] (in fact, an involution).

We single out a special family of rotation maps:

De�nition 2.7. A graph G is locally invertible if there exists a

permutation φ : [D] → [D] such that RotG(v, i) = (v[i], φ(i)).

We say that φ is the local inversion function.

For example, suppose G is the 3-cycle with V = {v1, v2, v3}
andE = {(v1, v2), (v1, v3), (v2, v3)}. It is easy to see that there is

no labeling of the edges such that for each vertex the two edges ad-

jacent to it are labeled di�erently. The labeling v1[1] = v2, v1[2] =
v3, v2[1] = v1, v2[2] = v3, v3[1] = v2 and v3[2] = v1 is a

valid labeling, but it is not locally invertible. The labeling v1[1] =
v2, v2[1] = v3, v3[1] = v1, v1[2] = v3, v2[2] = v1 and v3[2] = v2

is valid and locally labeled with the local inversion function φ(1) =
2 and φ(2) = 1.

Let G be a group and S ⊆ G a set closed under inverse. The

Cayley graphCay(G,S) is the undirected graph where the vertices

of the graph are the elements of the group G and (a, b) ∈ E i�

ab−1 ∈ S. For example, if the group is Zn2 and S = {e1, . . . , en}
where ei has one in the i’th coordinate and zero otherwise, then

Cay(Zn2 , S) is the graph of the boolean cube. If G = (Z3,+) and

S = {±1} we get the example above of the graph with 3 vertices.

The Cayley graph Cay(G,S) is regular with |G| vertices and

degree D = |S|. Every such a Cayley graph has a natural locally

invertible mapping where vertex a labels the edge (a, b) going

into b with the label a−1b ∈ S. It is a simple check that with this

labeling the local inversion function φ : S → S is φ(s) = s−1
.

2.3 Expanders and Spectral Gap
We associate a D-regular graph G = (V,E) with its transition

matrix which we also denote byG, i.e.,Gv,u = 1
D

if (v, u) ∈ E and

0 otherwise. Since G is regular and undirected its transition matrix

G is Hermitian and G has an orthonormal eigenvector basis with

real eigenvalues λ1 ≥ . . . ≥ λN . Also, since G is regular λ1 = 1.

We denote, λ̄(G) = max {λ2,−λN}. We say an undirected, D–

regular graph G is Ramanujan if λ̄(G) ≤ λRam(D)
def
= 2

√
D−1
D

.

Ramanujan graphs are essentially optimal algebraic expanders [16].

De�nition 2.8. (explicit graph) A family of graphs {Gn} is a

(n,D(n), λ(n)) family, if Gn has n vertices, degree D(n) and

λ̄(Gn) ≤ λ(n). We say {Gn} is explicit, if there exists an algorithm

that on input 1n outputsGn in time poly(n). {Gn} is fully explicit
if there exists an algorithm that given n, v ∈ [n], i ∈ [D(n)] out-

puts v[i] in time poly logn.

Cayley graphs are often used for (fully) explicit constructions

of expanders. If the group G is Abelian and the set of generators

S is small, then the graph Cay(G,S) cannot be a good expander.

However, when high degree is allowed commutativity is not a

243

Explicit, Almost Optimal, Epsilon-Balanced Codes STOC’17, June 2017, Montreal, Canada

big problem. It is easy to analyze the spectrum of a Cayley graph

over an Abelian group: it is a simple and well known fact that the

eigenvectors of the graph are the characters of the group G, and,

in particular, the eigenvectors do not depend on S. From that it is

easy to see that:

Lemma 2.9. For every S ⊆ Zn2 , λ̄(Cay(Zn2 , S)) = Bias(S). In
particular, Cay(Zn2 , S) is a (N = 2n, D = |S|, λ = Bias(S))
graph.

There are explicit constructions of Ramanujan Cayley graphs

over non-Abelian groups. In particular, for every D = pk + 1,

where p is prime and k is integer, there exists an explicit family of

degree D Ramanujan graphs (see, e.g., [12, 14]). However, we will

need a family with varying degree and spectral gap. This, in a sense,

makes the construction easier because we allow a larger degree,

but also puts more burden on the explicitness of the construction

because in a �xed degree construction with a Cayley graph one can

�x the generators, whereas, when D varies with the input length

the generators also need to be explicit. Yet, the constructions in

[14] can essentially handle this situation too, giving explicit (but

not necessarily fully explicit) constructions. Formally,

Lemma 2.10. [14] For every β > 0, there exists an algorithm
that given n and 0 < λ̄ < 1 runs in time poly(n) and outputs a
Ramanujan graph G with D ≤ 8

λ̄2 and λ̄(G) ≤ λ̄. The number
of vertices of G is either in the range [(1 − β)n, n] or in the range
[(1−β)2n, 2n]. The algorithm also outputs a local inversion function
φ : [D]→ [D] computable in polynomial time in its input length.

For the proof see Section 8.3.

2.4 The s-wide Replacement Product
The input to the product is:

• An undirected graphG = (V1 = [N1], E1) that is a (N1, D1, λ1)
graph. We assume G has a local inversion function φ = φG :

[D1]→ [D1]. That is, RotG(v(1), d1) = (v(1)[d1], φG(d1)).

• An undirected graph H that is a (N2 = Ds
1, D2, λ2) graph over

the vertex set V2 = [N2].

In the replacement product the parameters are set such that the

cardinality of V2 equals the degree D1 of G. An element v2 ∈
V2 is then interpreted as a label d1 ∈ [D1]. As explained in the

introduction, we take a larger graph H with V2 = [D1]s. That

is, we have Ds
1 vertices in V2 rather than D1 in the replacement

product. Therefore, we need to explain how to map a vertex v(2) ∈
V2 = [D1]s to a label d1 ∈ [D1] of G. For that we let πi : V2 =
[D1]s → [D1], for i = 0, . . . , s − 1, be the map that projects

v(2) = (v
(2)
0 , . . . , v

(2)
s−1) ∈ [D1]s to the i’th coordinate v

(2)
i .

De�nition 2.11. Fix t. Let v ∈ [N1]× [N2] and ī = (i0, . . . , it−1)
in [D2]t. The path indexed by ī starting at v is (v0, . . . , vt) ∈
([N1] × [N2])t+1

where v0 = v = (v(1), v(2)) and for ` =
0, . . . , t− 1,

• Take one step onH , i.e., temp
(1)
` = v

(1)
` and temp

(2)
` = v

(2)
` [i`].

Notice that we leave the �rst component untouched.

• Take one step on G with π` mod s(temp
(2)
`) as the [D1] label to

be used on G. I.e.,

v
(1)
`+1 = v

(1)
` [π` mod s(temp

(2)
`)], and,

v
(2)
`+1 = ψ` mod s(temp

(2)
`),

where for 0 ≤ j ≤ s− 1,

ψj(v
(2)) = (π0(v(2)), . . . , φG(πj(v

(2))), . . . , πs−1(v(2))),

i.e., ψj(v
(2)) keeps all coordinates unchanged, except for the

j’th coordinate where it applies the local inversion function of

G, i.e., it changes πj(v
(2)) to φG(πj(v

(2))).

We write PATH(v, ī) = (v0, . . . , vt).

To summarize, we start with a locally invertible, D1–regular

graph over N1 vertices. We replace each degree D1 vertex with a

“cloud” of Ds
1 vertices, and map a cloud vertex to a D1 instruction

at step ` using π` mod s. We take a 2t-step walk, with alternating

H and G steps.

2.5 Miscellaneous Notation
For an n-dimensional vector x we let |x|1 =

∑n
i=1 |xi| and ‖x‖ =√

〈x, x〉. If V is a set we let V = Span(V) and
−→v the vector corre-

sponding to v. 1V denotes the all-ones vector over V normalized to

unit length, namely 1V = 1√
|V |

∑
v∈V
−→v . When the vector space

is clear from context we simply denote this vector by 1.

We often use vectors coming from a tensor vector space V =
V1 ⊗ V2, as well as vertices coming from a product vertex set

V = V1 × V2. In such cases we use superscripts to indicate the

universe a certain object resides in. For example, we denote vectors

from V1 by x(1), y(1)
etc. In particular, if x ∈ V = V1 ⊗ V2 is a

product vector then x(1)
denotes the V1 component, x(2)

denotes

the V2 component and x = x(1) ⊗ x(2)
.

As in the analysis of the zig-zag product, we decompose V =

V1 ⊗V2 to its parallel and perpendicular parts. The subspace V‖ is

de�ned by

V‖ = Span

{−−→
v(1) ⊗ 1 : v(1) ∈ V1

}
and V⊥ is its orthogonal complement. For any vector τ ∈ V we

denote by τ‖ and τ⊥ the projections of τ onV‖ andV⊥ respectively.

Notice that V‖ is exactly the set of parallel vectors de�ned in the

introduction, andV⊥ is the set of perpendicular vectors. Also notice

that v ∈ V‖ i� v = v1 ⊗ 1 for some v1 ∈ V1.

SΛ denotes the symmetric group over Λ.

We measure the distance between two distributions P,Q by

|P −Q|1. The operator norm of a linear operator L is ‖L‖∞ =
maxx:‖x‖=1 ‖Lx‖. Clearly,

Claim 2.12. Let P,Q be two distributions over Ω and let {Tz}z∈Ω

be an arbitrary set of linear operators over Λ each with operator norm
bounded by 1. De�ne P = Ez∼P [Tz] andQ = Ez∼Q[Tz]. Then,

‖P −Q‖∞ ≤
∑
z

|P (z)−Q(z)| · ‖Tz‖∞ ≤ |P −Q|1.

244

STOC’17, June 2017, Montreal, Canada A. Ta-Shma

3 AMPLIFYING BIAS WITH A RANDOM
WALK

3.1 The Construction
The input to the construction is k and ε. Fix ε0 = 0.8, β = 0.01
and λ such that ζ = ε0 + 2β + 2λ < 0.9. Then,

• Use Lemma 2.5 to get an ε0 biased distribution Υ0 over {0, 1}k

and support size n (and calculate this n). Let Z : [n]→ {0, 1}k
be the index function of Υ0.

• Use Lemma 2.10 with n and λ to �nd an explicit undirected graph

G that is a (n′, D, λ) Ramanujan expander, with λ̄(G) ≤ λ and

D ≤ 8
λ2 . The number of vertices n′ is either in the interval

[(1−β)n, n] or in the interval [(1−β)2n, 2n]. W.l.o.g., it is the

�rst case and we let Υ0 be the ε0–biased distribution obtained

by Lemma 2.5 with support size n (otherwise we duplicate every

element twice to get support size 2n). Notice that n′ which is

the number of vertices in the graph G almost matches n which

is the support size of the ε0–biased distribution. Speci�cally,

δ = n−n′
n′ ≤ 2βn′.

• Fix t = 2dlogζ εe. The distribution Υ is obtained as follows:

(1) Sample v ∈ [n′] and ī = (i0, . . . , it−1) ∈ [D2]t. Let

PATH(v, ī) = (v0, . . . , vt) be the path obtained by start-

ing at v0 and walking over G according to the instructions

ī.
(2) Output Z(v

(1)
0)⊕ . . .⊕ Z(v

(1)
t) ∈ {0, 1}k .

Obviously Υ is distributed over {0, 1}k and has support size

n′Dt
2 ≤ nDt

2. Next, we will see that Υ is ε–biased and prove

Theorem 2.6.

3.2 Expressing the Bias Algebraically
We want to express the walk as a composition of linear operators.

We de�ne a vector space V with dim(V) = |V | = n′ and identify

an element v ∈ V with a basis vector
−→v ∈ V . On this basis we

de�ne the linear operator G which is the operator corresponding

to a random walk on G.

Next, let α = (α1, . . . , αk) ∈ {0, 1}k be a non-trivial linear test

maximizing the bias of Υ. Let S0 and S1 be the partition of [n′]
associated with it,

Sb =
{
v ∈ [n′] | 〈Z(v)|α〉 = b

}
.

De�ne Π0 and Π1 where Πb is the projection on the vector space

Span({−→v | v ∈ Sb}). We let

Π = Π0 −Π1.

Finally, the construction uses a random walk where the path

(v0, . . . , vt) is sampled according to the distribution

PATH(U[n′], U[Dt2]). Let peven(S1) (respectively podd(S1)) be

the probability a sampled path (v0, . . . , vt) visits S1 an even num-

ber (respectively odd number) of times. With this notation:

Theorem 3.1. We have:

(1) Bias(Υ) = Biasα(Υ) = |peven(S1)− podd(S1)|,
(2) peven(S1)− podd(S1) = 1†(ΠG)tΠ1,
(3)
∥∥(ΠG)2

∥∥ ≤ ε0 + 2β + 2λ, and,
(4) Bias(Υ) ≤ (ε0 + 2β + 2λ)bt/2c.

Proof. Item 1. By de�nition,

Biasα(Υ) = |Ev0,...,vt(−1)⊕
t
j=0〈Z(vj),α〉|

= |peven(S1)− podd(S1)|.

Item 2.

 1
.
.
.

1


†

ΠbtGΠbt−1 . . .Πb2GΠb1GΠb0
1
|V |


1
1
.
.
.

1

 is

the probability that vj ∈ Sbj for j = 0, . . . t, when (v0, . . . , vt) is

drawn uniformly from PATH(U[n′], U[Dt2]). The sum

∑
b0,...,bt∈{0,1}

(−1)b0+...+bt1†ΠbtG . . .Πb2GΠb1GΠb01 (2)

is peven − podd, because paths that fall an even number of times

into S1 contribute 1, while the other paths contribute −1. Using

the distributive law, peven(S1)− podd(S1) is

1†(
∑

bt∈{0,1}

(−1)btΠbt)G . . . (
∑

b0∈{0,1}

(−1)b0Πb0)1

Balancing the
1
|V | factor between the two all one vectors, giving

each a
1√
|V |

coe�cient, turns them into the normalized vector 1,

i.e., peven(S1)− podd(S1) = 1†(ΠG)tΠ1.

Item 3. Let v be a norm 1 vector. We represent v = v‖ + v⊥.

Notice that Gv‖ = v‖ =
∥∥∥v‖∥∥∥1. Therefore,

‖ΠGΠGv‖ ≤
∥∥∥ΠGΠGv‖

∥∥∥+
∥∥∥ΠGΠGv⊥

∥∥∥
≤

∥∥∥v‖∥∥∥‖ΠGΠ1‖+ ‖ΠGΠ‖
∥∥∥Gv⊥∥∥∥

≤
∥∥∥ΠG(Π1)‖

∥∥∥+
∥∥∥ΠG(Π1)⊥

∥∥∥+
∥∥∥Gv⊥∥∥∥

≤
∥∥∥(Π1)‖

∥∥∥+ 2λ.

To �nish the proof note that

∥∥∥(Π1)‖
∥∥∥ = | 〈Π1,1〉 | = | |S0|−|S1|

n′ |.

How large can | |S0|−|S1|
n′ | be? If we de�ne

Sn,b = {v ∈ [n] | 〈Z(v), α〉 = b},

then, as Υ0 is ε0–biased we know that | |Sn,0|
n
− |Sn,1|

n
| ≤ ε0. We

deleted n−n′ ≤ βn elements and | |Sn′,0|−|Sn′,1| | is maximized

if all the elements in [n] \ [n′] belong to the smaller set. Thus,

| |S0| − |S1| | ≤
1 + ε0

2
n− (

1− ε0

2
n− βn) ≤ (ε0 + β)n

≤ (ε0 + β)
1

1− β n
′ ≤ (ε0 + 2β)n′.

It therefore follows that

∥∥∥(Π1)‖
∥∥∥ ≤ ε0 + 2β.

Item 4. We have Bias(Υ) = Biasα(Υ) equals

= |peven(S1)− podd(Sn1)| = |1†(ΠG)tΠ1|

≤
∥∥(ΠG)t

∥∥ ≤ ∥∥(ΠG)2
∥∥bt/2c ≤ (ε0 + 2β + 2λ)bt/2c.

�

245

Explicit, Almost Optimal, Epsilon-Balanced Codes STOC’17, June 2017, Montreal, Canada

Roughly speaking, Theorem 3.1(3) tells us that every two steps

on the graph reduce the error by λ, i.e., one in every two steps

works for us. For example, if we start with a vector in V‖ and apply

ΠGΠG on it, then the �rst application of G is wasted and then Π

sends most of the weight to V⊥, because the part that is sent to V‖
is proportional to the bias and is small. The second application ofG
shrinks the vector by λ, and we have made two steps one of which

worked for us. The �rst step ΠG alone did not make any progress,

and the algebraic manifestation of this is that ‖ΠG‖ = 1 because

‖ΠG1‖ = ‖Π1‖ = 1 (Π1 in the standard basis {−→v | v ∈ V1} has

± 1√
|V |

entries).

One could wonder whether this bad scenario can be sustained

in a long walk of length t, and whether, perhaps, most of the steps

in a t-long walk work for us. While we do not know the answer to

this we suspect the answer is negative. If we think of the previous

scenario, we see that a bad situation can happen if the second

application of Π sends most of the vector GΠG1 to V ‖. If this

happens, we will keep iterating the bad scenario from before, and

only one in two steps will work for us. We think this situation might

be possible because the operator Π is acting globally on the whole

space V . In a sense, we obtain the better solution by “protecting”

the parallel space from the action of Π and we will see that in detail

later on.

Next, we show explicitness:

Lemma 3.2. If G and Υ0 are explicit then Υ is explicit. If G and
Υ0 are fully explicit then Υ is fully explicit.

Proof. Υ is an ε–biased distribution over {0, 1}k with sup-

port size n′Dt
. The input to the indexing algorithm is k, ε, a ∈

[n′Dt], j ∈ [k]. Given k and ε the algorithm determines the pa-

rameters n, n′, D, t, and ε0. The algorithm then interprets a as

a = (u, (i0, . . . , it−1)) with u ∈ V = [n′] and ij ∈ [D]. Next,

the algorithm computes PATH(u, a). This can be done in time

t · poly(logn) if G is fully explicit and in time t · poly(n) if G is

explicit.

Say PATH(u, a) = (v0, . . . , vt). For each 1 ≤ i ≤ t the

algorithm computes the j’th bit of the vi’th element in the support

of Υ0. This can be done in time poly(logn) if Υ0 is fully explicit,

and in time poly(n) if Υ0 is explicit. The output is the sum (mod

2) of all these bits. �

Proof. (of Theorem 2.6) We use the construction above. By The-

orem 3.1 the construction is ε–biased. The support size is n′Dt ≤
nDt = O(k) · DO(log 1

ε
) = n

εO(1) . The construction is explicit

because of Lemma 3.2, and because G is explicit by Lemma 2.10

and Υ0 is fully explicit by Lemma 2.5. �

We note that the support size can be brought to
k

ε4+α
for any

constant α > 0. However, this is not essential to us, so we do not

try to optimize the parameters here.

4 EFFICIENT ERROR REDUCTION
4.1 The s-wide Walk
Suppose

• Υ0 is ε0–biased over {0, 1}k with support size n,

• G is (N1 = n′, D1, λ1) expander with a local inversion function

φ, n′ ≤ n, n− n′ ≤ βn ≤ 2βn′.
• H is (N2 = Ds

1, D2, λ2) expander.

De�ne a new distribution Υ over {0, 1}k obtained as follows:

(1) Sample v ∈ [N1]× [N2] and ī = (i0, . . . , it−1) ∈ [D2]t, and

set (v0, . . . , vt) = PATH(v, ī).

(2) Output Z(v
(1)
0)⊕ . . .⊕ Z(v

(1)
t) ∈ {0, 1}k .

The heart of the construction is proving:

Theorem 4.1. IfH is ζ-pseudorandom with respect to φ, where
we de�ne pseudo-randomness with respect to φ in De�nition 6.1, and,
ε0+2β+2λ1 ≤ λ2

2 thenΥ is ε = (λs2+sλs−1
2 +s2(λs−3

2 +ζ))bt/sc-
biased.

4.2 A Top-down View of the Proof
We now give a top-down overview of the proof. For the time being

we are only concerned with the bias achieved by Υ and not with

the support size, e�ciency, or even the mere existence of G,H and

Υ0, and this allows us to almost completely ignore the parameters.

We want to express the s-wide walk as a composition of lin-

ear operators. For i ∈ {1, 2}, we de�ne a vector space Vi with

dim(Vi) = |Vi| = Ni, and we identify an element v(i) ∈ Vi with

a basis vector

−→
v(i) ∈ Vi. Notice that

{−−→
v(1) ⊗

−−→
v(2)

}
, for v(1) ∈ V1

and v(2) ∈ V2, is a basis for V = V1 ⊗ V2. On this basis we de�ne

the linear operators

H̃

(−−→
v(1) ⊗

−−→
v(2)

)
=
−−→
v(1) ⊗

−−−→
Hv(2),

Ġ`

(−−→
v(1) ⊗

−−→
v(2)

)
=
−−−−−−−−−−−−−→
v(1)[π` mod s(v

(2))]⊗
−−−−−−−−−→
ψ` mod s(v

(2)),

where ψ` mod s is as de�ned in Def 2.11.

Next, �x the linear test α maximizing the bias of Υ and as be-

fore let S0 and S1 be the ε0–balanced partition of [n] associated

with it, Sb =
{
v ∈ V (1) | 〈Z(v)|α〉 = b

}
. We let Πb be the projec-

tion on the vector space Span({−→v | v ∈ Sb}) and Π = Π0 −Π1.

Finally, we extend these operators to V = V1 ⊗ V2 and de�ne

Π̇b

(−−→
v(1) ⊗

−−→
v(2)

)
=
−−−−−→
Πb(v

(1)) ⊗
−−→
v(2)

and Π̇

(−−→
v(1) ⊗

−−→
v(2)

)
=

−−−−→
Π(v(1))⊗

−−→
v(2)

.

Let peven(S1) be the probability a random walk of length t on

G visits S1 ⊆ [n′] an even number of times. Similar to Section 3,

Theorem 4.2. Denote L̇j = Π̇ĠjH̃ . We have:

(1) Bias(Υ) = Biasα(Υ) = |peven(S1)− podd(S1)|,
(2) peven(S1)− podd(S1) = 1†Π̇Ġt−1 . . . Π̇Ġ0H̃Π̇1,

(3) Bias(Υ) ≤
∥∥∥L̇s−1 . . . L̇0

∥∥∥bt/sc.
(4) IfH is ζ-pseudorandomwith respect toφ and ε0+2β+2λ1 ≤ λ2

2

then
∥∥∥L̇s−1 . . . L̇0

∥∥∥ ≤ λs2 + sλs−1
2 + s2(λs−3

2 + ζ).

Proof.

(1) The proof is identical to Theorem 3.1(1).

246

STOC’17, June 2017, Montreal, Canada A. Ta-Shma

(2) Similar to what we saw before, 1†Π̇btĠt−1 . . . H̃Π̇b01 is the

probability that vj ∈ Sbj for j = 0, . . . t. The rest (including

using the distributive law) is almost identical to Theorem 3.1(2).

(3) So far we have seen that Bias(Υ) = Biasα(Υ) =

|peven(S1)− podd(S1)| = |1L̇t−1 . . . L̇0Π̇1| which is at most∥∥∥L̇t−1 . . . L̇0

∥∥∥. However, L̇i = Π̇ĠiH̃ and Ġi = Ġi mod s.

Hence L̇t−1 . . . L̇0 has L̇s−1 . . . L̇0 repeated b t
s
c times, plus

some trailing operators and therefore

Bias(Υ) ≤
∥∥∥L̇t−1 . . . L̇0

∥∥∥ ≤ ∥∥∥L̇s−1 . . . L̇0

∥∥∥bt/sc.
(4) We de�ne pseudo-randomness with respect to φ in Def 6.1

and prove (4) in Theorem 6.4 in Section 6.1. This is the main

technical work in the paper.

�

Items (3) and (4) together give Theorem 4.1.

5 INSTANTIATING PARAMETERS
We are given k, ε > 0. We �x a parameter α ≤ 1

100
such that

α3

2 log 1
α

≥ 1

log 1
ε

. (3)

Our goal is to build an ε–biased distribution over {0, 1}k with

support size n = O(k

ε2(1+14α)).

We may assume that
1

100
respects Eq (3), for otherwise ε is also

a constant and we may use Theorem 2.6. If we take the smallest

possible value of α allowed by Eq (3) then α = Θ((
log log 1

ε

log 1
ε

)1/3).

For a �rst reading it is recommended to think of α as an arbitrarily

small constant. We also remark that w.l.o.g. we can assume that

(1
ε
)8α < k, for otherwise the AGHP construction [3] has support

size O(k
2

ε2
) = O(k

ε2+8α) and we are done.

We now choose parameters for:

• An inner graph: An (N2, D2, λ2) expander graph H(V2, E2).

• A Large-Bias distribution: An ε0–biased distribution Υ0 over

{0, 1}k with support size n.

• An outer graph: An (N1, D1, λ1) expander graph G(V1, E1)
with local inversion function φ : [D1]→ [D1].

We choose the parameters as follows:

• The inner graph H : For reasons that will become clear later, the

inner graph is a Cayley graph over the Abelian group Zlog |V2|
2 .

We choose it as follows:

– Set s = d 1
α
e and let D2 be the �rst power of 2 larger than

s4s
.

– De�ne λ2 = b2√
D2

for b2 = 4
√

2 log(D2)s. We remark that

D2 ≥ (2b2s
2)2

because α ≤ 1
100

.

– Let A be an explicit λ2–biased set over {0, 1}4s log(D2)
with

support size 2 (4s log(D2))2

λ2
2

= (b2
λ2

)2
using the AGHP con-

struction (see Lemma 2.4). N2 = 24s log(D2) = D4s
2 .

– Let H = Cay(Z4s log(D2), A).

By Lemma 2.9 H is a (N2 = 24s log(D2) = D4s
2 , (

b2
λ2

)2 =

D2, λ2) graph.

By Lemma 7.1 in Section 7 that we still have to prove, H is

ζ = 0–pseudorandom with respect to any locally invertible

function φ : [D1]→ [D1].
• The distribution Υ0: Set ε0 = 1

D2
. Pick an explicit ε0–biased

distribution Υ0 over {0, 1}k with support size n = O(k
εc0

) using

Theorem 2.6.
5

Similarly, we can construct such a distribution

with support size 2n, e.g., by taking each element in the support

twice.

• The Outer graph G: Set D1 = D4
2 . Use Lemma 2.10 with n,D

and β =
λ2
2
6

to �nd an explicit undirected graph G that is a

(n′, D1, λ1) Ramanujan expander with D1 ≤ 8
λ2
1

. The number

of vertices n′ is either close to n or to 2n. W.l.o.g. it is close

to n (otherwise take every element in the support twice), and

n−n′
n′ ≤ βn ≤ 2βn′. We notice a few things:

– λ1 ≤ λ2
2
6

. This is because λ1 ≤ 4√
D1

= 4
D2

2
≤ b22

6D2
=

λ2
2
6

. Also, ε0 = 1
D2
≤ b22

3D2
=

λ2
2
3

. Together we see that

ε0 + 2β + 2λ1 ≤ λ2
2.

– Also, N2 = D4s
2 = Ds

1 .

– We also remark that N2 = D4s
2 = s16s2 = (2log 1

α)
16
α2 =

2
16α

log 1
α

α3 ≤ 216α
log 1

ε
2 ≤ (1

ε
)8α

. We explained at the begin-

ning of this section that we can assume w.l.o.g. that (1
ε
)8α ≤ k.

Hence, we can assume N2 ≤ k.

• The walk length: Set the walk length t to be the �rst integer such

that λ
(1−4α)(1−α)t
2 ≤ ε.

Notice that

(
1

λ2
)(1−4α)(1−α) s

α < (
1

λ2
)
s
α = (

√
D2

b2
)
s
α

≤ D
s
2α
2 = (24s log s)

s
2α

= 2
2
log 1

α
α3 ≤ 2log 1

ε =
1

ε
,

because D2 is about s4s = 24s log(s)
, s is about

1
α

and because

of our choice of α. Hence λ
(1−4α)(1−α) s

α
2 > ε. It follows that

t ≥ s
α

.

5.1 Bias
Theorem 5.1. H is ζ = 0 pseudo-random with respect to φ.

We will prove the theorem in Section 7. With that:

Theorem 5.2. Υ is ε– biased.

Proof. We have seen in Theorem 4.1 that Υ is (λs2 + sλs−1
2 +

s2λs−3
2)bt/sc-biased. However, this term is at most

(2s2λs−3
2)bt/sc ≤ (λs−4

2)
t
s
−1

= λ
s−4
s
·(t−s)

2 = λ
(1− 4

s
)(1− s

t
)t

2

≤ λ
(1−4α)(1−α)t
2 = ε,

5

We can also work with other constant-biased distributions, and in particular with

Justensen ampli�ed with a true product a constant number of times to reach the desired

small bias.

247

Explicit, Almost Optimal, Epsilon-Balanced Codes STOC’17, June 2017, Montreal, Canada

where we have used λ2 = b2√
D2
≤ 1

2s2
, s ≥ 1

α
and t ≥ s

α
. �

5.2 Support Size
Theorem 5.3. Υ has support size O(k

ε2+O(α)).

Proof. The support size is N1N2D
t
2 = n′Ds

1D
t
2 < nDs

1D
t
2

and

nDs
1D

t
2 = Θ(

k

εc0
D4s

2 D
t
2) = Θ(kDt+4s+c

2)

= O(kDt+4αt+c
2) = O(kD

(1+5α)t
2).

However, D2 ≥ (s4)s ≥ bs2 = b
1/α
2 ,

because b2 = 4
√

2 log(D2)s ≤ s4
.

thatD
1
2
−α

2 =
√
D2
Dα2
≤
√
D2
b2

= 1
λ2

andD2 ≤ (1
λ2

)
1

1
2
−α

. Hence,

Dt
2 ≤ (

1

λ2
)

t
1
2
−α = (

1

λ2
)

2t
1−2α

= (
1

ε
)

1
(1−4α)(1−α)t

2t
1−2α ≤ (

1

ε
)2(1+8α)

, and,

D
(1+5α)t
2 ≤ (

1

ε
)2(1+8α)(1+5α) ≤ (

1

ε
)2(1+14α),

where the last inequalities hold for α small enough. Altogether the

support size is O(k

ε2(1+O(α))) as desired. �

We now plug in a value forα. Pluggingα a small enough constant

gives a construction with support size
k

ε2+β
for arbitrarily small

constant β. plugging the smallest value of α allowed by Eq (3) we

get:

Lemma 5.4. If we take α having equality in Eq (3), then the con-
struction has support size

k · 22log 1
ε

+O((log 1
ε

)2/3(log log 1
ε

)1/3).

Proof. Take such an α. Then

log
1

α
= Θ(log log

1

ε
)

and α = Θ((
log 1

α

log 1
ε

)1/3). Hence,

(
1

ε
)O(α) = 2

O(log 1
ε
·(

log log 1
ε

log 1
ε

)1/3)

= 2O((log 1
ε

)2/3(log log 1
ε

)1/3).

�

In the introduction we give an intuitive explanation of the pa-

rameters and the choice of α.

5.3 What Have We Omitted So Far?
Thus, in order to complete the proof we still need to:

• De�ne pseudo-randomness with respect to φ. We do that in

De�nition 6.1.

• Bound ‖Ls−1 . . . L0‖ when H is pseudo-random with respect

to φ. We do that in Section 6.

• Prove that H is pseudo-random with respect to φ. We do that in

Section 7.

• We need to show that the basic structures that we use are explicit,

namely prove Lemmas 2.4, 2.5 and 2.10. We do that in Section 8.

6 UNDERSTANDING L̇S−1 . . . L̇0

We recall some notation from before:

• G is D1 regular and can be represented as G = 1
D1

∑D1
i=1 Gi

where Gi is the transition matrix of some permutation in SV1 .

Also, G has a local inversion function φ.

• Ġi
(−−→
v(1) ⊗

−−→
v(2)

)
=
−−−−−−−−−→
Gπi(v(2))(v

(1))⊗
−−−−−→
ψi(v

(2)).

• Π̇ = Π⊗ IV2 ,

• H is D2 regular and can be represented as H = 1
D2

∑D2
j=1Hj

where Hj is the transition matrix of a permutation γj ∈ SV2 .

Let H̃j = IV1 ⊗Hj . H̃ = IV1 ⊗H .

• L̇i = Π̇ĠiH̃ = 1
D2

∑D2
j=1 Π̇ĠiH̃j .

Suppose we start at some

−−→
v(1) ⊗

−−→
v(2)

and walk according to

Π̇Ġ`−1H̃j`−1 . . . Π̇Ġ0H̃j0 for j = (j0, . . . , j`−1) ∈ [D2]`. A sim-

ple check (using induction) shows that the G instructions that we

perform in the walk are

z(v(2)) = (z0(v(2)), . . . , z`−1(v(2))) ∈ [D1]`,

where

σj0(v(2)) = γj0(v(2)),

σj0,...,j`(v
(2)) = γj`(ψ`−1(σj0,...,j`−1(v(2)))),

and zi(v
(2)) = πi(σj0,...,ji(v

(2))). With that in mind we de�ne:

De�nition 6.1. Keeping notation as above, we say j ∈ [D2]` is

ζ–pseudorandom with respect to φ if:∣∣Z − U[D1]`

∣∣
1
≤ ζ,

where Z is the distribution obtained by picking v(2) ∈ V2 uni-

formly at random and outputting z(v(2)) ∈ [D1]`. We say H is

ζ–pseudorandom with respect to φ if for every j ∈ [D2]s, j is

ζ–pseudorandom with respect to φ.

Lemma 6.2. Suppose j ∈ [D2]` is ζ–pseudorandom with respect to
φ. Fix any norm one vectors τ = τ (1)⊗1V2 and ξ = ξ(1)⊗1V2 ∈ V‖.
Then,∣∣∣〈Π̇Ġ`−1H̃j`−1 . . . Π̇Ġ0H̃j0τ, ξ

〉
−
〈

(ΠG)`τ (1), ξ(1)
〉∣∣∣ ≤ ζ.

Proof. Denote Tz = ΠGz`−1 . . .ΠGz0 . Then,

Π̇Ġ`−1H̃j`−1 . . . Π̇Ġ0H̃j0τ (1) ⊗ 1V2 equals

1√
N2

∑
v(2)∈V2

Tz(v(2))τ
(1) ⊗

−−−−→
σ(v(2)),

for some permutation σ : V2 → V2 that is completely determined

given j. Therefore, the inner product〈
Π̇Ġ`−1H̃j`−1 . . . Π̇Ġ0H̃j0τ, ξ(1) ⊗ 1V2

〉
equals

1

N2

∑
v(2),u(2)∈V2

〈
Tz(v(2))τ

(1), ξ(1)
〉
·
〈−−−−→
σ(v(2)),

−−→
u(2)

〉
.

However, as σ is a permutation over V2, for every v(2) ∈ V2 there

is exactly one u(2)
that does not vanish. Hence,〈

Π̇Ġ`−1H̃j`−1 . . . Π̇Ġ0H̃j0τ, ξ
〉

248

STOC’17, June 2017, Montreal, Canada A. Ta-Shma

equals

1

N2

∑
v(2)∈V2

〈
Tz(v(2))τ

(1), ξ(1)
〉
,

or, equivalently, Ez∼Z
〈
Tzτ (1), ξ(1)

〉
. Also,

〈
(ΠG)`τ (1), ξ(1)

〉
=

Ez∼U
[D1]`

〈
Tzτ (1), ξ(1)

〉
. By Claim 2.12,∥∥∥Ez∼ZTz − Ez∼U
[D1]`
Tz
∥∥∥ ≤

∥∥Z − U[D1]`

∥∥.
As j is ζ–pseudorandom with respect to G we know that∣∣Z − U[D1]`

∣∣
1
≤ ζ.

Together,〈
(Ez∼ZTz − Ez∼U

[D1]`
Tz)τ (1), ξ(1)

〉
≤ ζ
∥∥∥τ (1)

∥∥∥∥∥∥ξ(1)
∥∥∥ ≤ ζ

as desired. �

We now extend Lemma 6.2 to H . We claim:

Theorem 6.3. Suppose thatH is ζ–pseudorandom with respect
to φ. For every 0 ≤ i1 ≤ i2 ≤ s− 1 and every τ, ξ ∈ V‖,∣∣∣〈L̇i1 . . . L̇i2τ, ξ〉− 〈(ΠG)i2−i1+1τ (1), ξ(1)

〉∣∣∣ ≤ ζ · ‖τ‖ · ‖ξ‖.

Proof. Let ` = i2 − i1 + 1. H̃ = 1
D2

∑D2
j=1 H̃j , .i.e., a convex

combination of H̃j . Therefore,

L̇i1 . . . L̇i2 = Ej1,...,j`∈[D2]Π̇Ġi1H̃j1 . . . Π̇Ġi2H̃j` .

Hence, by convexity, the theorem follows from Claim 2.12 that as-

serts that for every j1, . . . , j`, the value〈
Π̇Ġi1H̃j1 . . . Π̇Ġi2H̃j`τ, ξ

〉
is ζ close to

〈
(ΠG)`τ (1), ξ(1)

〉
. �

6.1 Bounding
∥∥∥L̇s−1 . . . L̇0

∥∥∥
Theorem 6.4. IfH is ζ-pseudorandom with respect to φ and ε0 +

2β+2λ1 ≤ λ2
2 then

∥∥∥L̇s−1 . . . L̇0

∥∥∥ ≤ λs2 +sλs−1
2 +s2(λs−3

2 +ζ).

Proof. Let ws, x0 be norm 1 vectors such that∥∥∥L̇s−1 . . . L̇0

∥∥∥ = w†sL̇s−1 . . . L̇0x0. We decompose the above ex-

pression until the vectors on both sides are parallel. Speci�cally, for

1 ≤ i ≤ s de�ne

xi = L̇i−1x
⊥
i−1 = Π̇Ġi−1H̃x

⊥
i−1,

ws−i = H̃(Ġs−iΠ̇ws−i+1)⊥,

ps−i = H̃(Ġs−iΠ̇ws−i+1)‖

Recall that for v ∈ V⊥, H̃v ∈ V⊥ and

∥∥∥H̃v∥∥∥ ≤ λ2‖v‖ while

H̃v = v for v ∈ V‖. Therefore, for i < s, wi ∈ V⊥ and pi ∈ V‖.
Thus, for i > 0,

‖xi‖ =
∥∥∥L̇i−1x

⊥
i−1

∥∥∥ ≤ λ2

∥∥∥x⊥i−1

∥∥∥ ≤ λ2‖xi−1‖,

‖ws−i‖ =
∥∥∥H̃(Ġs−iΠ̇ws−i+1)⊥

∥∥∥ ≤ λ2‖ws−i+1‖,

‖ps−i‖ =
∥∥∥H̃(Ġs−iΠ̇ws−i+1)‖

∥∥∥ ≤ ‖ws−i+1‖.

Therefore ‖xi‖ ≤ λi2, ‖wi‖ ≤ λs−i2 and ‖pi‖ ≤ λs−i−1
2 .

We claim:

Lemma 6.5.

w†sL̇s−1 . . . L̇0x0 = w†sx
⊥
s +

∑
s≥j≥i≥0

p†jL̇j−1 . . . L̇ix
‖
i .

Proof. We decompose x0 = x
‖
0 + x⊥0 . Focusing on x⊥0 we see

that, by de�nition,

w†sL̇s−1 . . . L̇0x
⊥
0 = w†sL̇s−1 . . . L̇1x1.

We continue by decomposing x1, x2, . . . and eventually this results

in:

w†sL̇s−1 . . . L̇0x0 = w†sx
⊥
s +

s∑
i=0

w†sL̇s−1 . . . L̇ix
‖
i .

We now go through a similar procedure with w†sL̇s−1 . . . L̇ix
‖
i .

(w†sL̇s−1)† = L̇†s−1ws = (Π̇Ġs−1H̃)†ws = H̃Ġs−1Π̇ws.

Notice that we have used H̃† = H̃ (because H is an undirected

graph), Ġs−1 = Ġ†s−1 (because Ġi is undirected because it imple-

ments an involution) and H̃ = H̃† (because H is a projection).

We decompose Ġs−1Π̇ws to its parallel and perpendicular parts.

The parallel part gives the parallel component ps−1 and we stop

decomposing it. The perpendicular part gives ws−1. I.e.,

w†sL̇s−1 . . . L̇ix
‖
i = (L̇†s−1ws)

†L̇s−2 . . . L̇ix
‖
i

= (H̃Ġs−1Π̇ws)
†L̇s−2 . . . L̇ix

‖
i

= (H̃(Ġs−1Π̇ws)
‖)†L̇s−2 . . . L̇ix

‖
i

+ (H̃(Ġs−1Π̇ws)
⊥)†L̇s−2 . . . L̇ix

‖
i

= p†s−1L̇s−2 . . . L̇ix
‖
i + w†s−1L̇s−2 . . . L̇ix

‖
i

Continuing like this, and noticing thatwi ⊥ x‖i for i < s because

wi ∈ V⊥ and x
‖
i ∈ V

‖
, we get that w†sL̇s−1 . . . L̇0x0 equals

w†sx
⊥
s + w†sx

‖
s +

∑
s−1≥j>i≥0

p†jL̇j−1 . . . L̇ix
‖
i . (4)

�

We now bound each term in the expression,

•
∣∣w†sx⊥s ∣∣ ≤ ∥∥x⊥s ∥∥ ≤ ‖xs‖ ≤ λs2.

• Next,

∣∣∣∑s−1
i=0 p

†
ix
‖
i

∣∣∣ ≤∑s−1
i=0 ‖pi‖·

∥∥∥x‖i ∥∥∥ ≤∑s−1
i=0 λ

s−i−1
2 λi2 =

sλs−1
2 .

• Finally, we are left with the term

∑
s−1≥j>i≥0

p†jL̇j−1 . . . L̇ix
‖
i . (5)

pj , x
‖
i ∈ V

‖
and therefore pj = p

(1)
j ⊗ 1, x

‖
i = (x

‖
i)

(1) ⊗ 1.

By Theorem 6.3, assuming H is ζ-pseudorandom for G,

249

Explicit, Almost Optimal, Epsilon-Balanced Codes STOC’17, June 2017, Montreal, Canada

p†jL̇j−1 . . . L̇ix
‖
i ≤ p

(1)
j (ΠG)j−i(x

‖
i)

(1) + ζ
∥∥∥x‖i ∥∥∥‖pj‖

≤ (
∥∥∥(ΠG)j−i

∥∥∥+ ζ)
∥∥∥x‖i ∥∥∥‖pj‖

≤ ((ε0 + 2β + 2λ1)b
j−i
2
c + ζ)λ

s−(j−i)−1
2

≤ (λ
2(j−i

2
−1)

2 + ζ)λ
s−(j−i)−1
2

≤ λs−3
2 + ζ.

We have used Theorem 3.1(3) and the assumption that ε0 +
2β + 2λ1 ≤ λ2

2. Therefore, the term in Equation (5) is bounded

by at most s2(λs−3
2 + ζ).

�

7 H IS PSEUDO-RANDOM
Now we prove that if H is a Cayley graph over [D1]s then it re-

spects the additive structure of [D1]s and as a result it is ζ = 0
pseudorandom with respect to G. As explained in the introduction,

the results in this section were suggested to us by an anonymous

referee [17]. We claim:

Lemma 7.1. Let G and φ be as above. SupposeD1 = 2m for some
integer m, and identify V2 = [D1]s with the additive group Zms2 .
Let H = Cay(V2 = Zms2 = [D1]s, A) for some set of generators
A ⊆ Zms2 = [D1]s. ThenH is ζ = 0 pseudorandom with respect to
G.

Proof. H is a regular, undirected graph with degree D2 = |A|.
Express H = 1

D2

∑
j∈[D2]Hj where aj is the j’th element in A

and Hj is the transition matrix of the permutation γj : Zms2 →
Zms2 de�ned by γj(u) = u + aj . Fix any j0, . . . , js−1 ∈ [D2]s.
Then:

Claim 7.2. Fix u(2) = (u
(2)
0 , . . . , u

(2)
s−1) ∈ V2 = [D1]s. For

every 0 ≤ i < s,

σj0,...,ji(u
(2)) = (τ0(u

(2)
0), . . . , τs−1(u

(2)
s−1))

for some permutations τ0, . . . , τs−1 over [D1].

Proof. By induction over i. The case i = 0 is clear because

σj0(u(2)) = γj0(u(2)) = u(2) + aj0 is

(u
(2)
0 + (aj0)0, . . . , u

(2)
s−1 + (aj0)s−1).

Let us assume for `− 1 and prove for `. By de�nition,

σj0,...,j`(u
(2)) = γj`(ψ`−1(σj0,...,j`−1(u(2)))).

However, by induction, σj0,...,j`−1 acts on each coordinate sepa-

rately. Also, by de�nition ψ` acts on each coordinate separately.

Finally, as in the base case, γj` also acts on each coordinate sepa-

rately. Hence the induction follows. �

It follows that (π0(σj0(u(2))), . . . , πs−1(σj0,...,js−1(u(2)))) =

(τ0(u
(2)
0), . . . , τs−1(u

(2)
s−1)) for some permutations τ0, . . . , τs−1.

The lemma follows since u
(2)
0 , . . . , u

(2)
s−1 are uniform and indepen-

dent. �

8 EXPLICITNESS
8.1 Primes and Irreducible Elements
For many constructions it is necessary to �nd prime numbers and/or

irreducible polynomials over a �nite �eld. For irreducible polyno-

mials the problem is essentially solved:

Theorem 8.1. [21] There exists an algorithm that given ` runs in
time poly(`) and outputs a monic, irreducible polynomial f ∈ F2[x]
of degree `.

We will also need to �nd a prime on a given arithmetic pro-

gression (for the simple proof see the full version of the paper or

[23]):

Lemma 8.2. For every β > 0, there exists an algorithm that given
a,m, n such that (a,m) = 1 runs in time poly(n) and outputs
a prime number n′ on the sequence a + mN and in the interval
[(1− β)n, n].

8.2 AGHP and Justensen
For the AGHP construction:

Proof. (of Lemma 2.4) We repeat the AGHP construction: Let

q = 2` be the �rst power of 2 such that q ≥ k
ε

(so q < 2k
ε

) and Fq
the �eld with q elements. The distributionD has q2

elements, the el-

ement indexed by (a, b) ∈ F2
q is (

〈
a0, b

〉
,
〈
a1, b

〉
, . . . ,

〈
ak−1, b

〉
) ∈

{0, 1}k , where the inner product is in F`2 and is done modulo 2. [3]

give the simple proof that D is ε–biased.

For explicitness, given k and ε we compute q = 2`. We then

use Lemma 8.1 to �nd a degree ` irreducible polynomial over F2.

We do arithmetic in Fq modulo this polynomial. We can compute〈
aj , b

〉
in poly-logarithmic time using fast exponentiation. Hence,

the construction is fully explicit. �

For the Justensen code:

Proof. (of Lemma 2.5) For Υ0 we take a uniform distribution

over the rows of the generating matrix of a Justensen code [n =
ck, k, α]2, when c is large enough so that

k
n

is small enough and

the construction works. The set of rows of the generating matrix

of the code is a 2(1
2
− α) biased set. What we still need to check is

that Υ0 is fully explicit, or, equivalently, that the code is explicit,

i.e., given i ∈ [n] and j ∈ [k] we can generate the entry (i, j) of

the generating matrix in time poly(n).

Justensen code takes a message word (α0, . . . , αk−1) ∈ Fk over

some �eld F of characteristic 2 and size Θ(n), and interprets it as a

polynomial pα ∈ F[x] where pα(x) =
∑k−1
i=0 αix

i
. The codeword,

when written over F, is

(pα(q1), q1pα(q1), . . . , pα(q`), q`pα(q`)) where q1, . . . , q` is an

enumeration of F∗. Thus, the entries in the generating matrix,

when taken over F, are qji (as in RS codes) plus rows with entries

qiq
j
i = qj+1

i . It follows that all we need for full explicitness is the

ability to perform arithmetics in the �eld F. For that we use Lemma

8.1. �

8.3 Explicit Expanders
We �rst describe a family {Gp,q} of graphs from [14]. We need a

(consequence of a) theorem of Jacobi:

250

STOC’17, June 2017, Montreal, Canada A. Ta-Shma

Fact 8.3. Let p be a prime. The are exactly p+1 ways to represent
p as a sum a2

0 +a2
1 +a2

2 +a2
3, where a0 is odd and a1, a2, a3 are even.

Let us denote this set of solutions Ap. Ap ⊆ Z4 and |Ap| = p+ 1.

Assume: p and q are distinct primes, and p, q ≡ 1(mod 4). The

graph Gp,q = (V,E) is Cay(PGL(2,Fq), Sp) where

Sp =

{(
a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

)
: (a0, a1, a2, a3) ∈ Ap

}
,

and i is a square root of −1 in Fq (see also [12, Section 5]). It turns

out this graph is undirected. [14] prove the connected component of

the vertex vid, corresponding to the identity e of G, is Ramanujan.

If

(
p
q

)
= −1 the connected component is the full graph, and since

|PGL(2, q)| = (q − 1)q(q + 1) we see G is a

(N = (q − 1)q(q + 1), D = p+ 1, λ̄ =
2
√
D − 1

D
)

graph. If

(
p
q

)
= 1 the connected component is half the graph, and

the graph is, in fact, a Cay(PSL(2,Fq), Sp). We see then that

Gp,q is (N = (q−1)q(q+1)
2

, D = p+ 1, λ̄ = 2
√
D−1
D

) graph.

Proof. (of Lemma 2.10) Find a prime q ≡ 1(mod 4) in the

interval [((1− β)2n)1/3, (2n)1/3] and another prime p ≡ 1(mod
4) in the interval [(1− β) 8

λ̄2 ,
8
λ̄2]. Output the graph Gp,q de�ned

above. As the graph is Ramanujan λ̄(G) ≤ 2√
D
≤ λ̄. The running

time is poly(p, q) for �nding p, q the setAp and then writing down

the whole graph. �

ACKNOWLEDGEMENTS
The idea for this paper originated after seeing the ε-bias construc-

tion of Eyal Rozenman and Avi Wigderson as described in Andrej

Bogdanov’s lecture notes [8]. I thank Eyal and Avi for letting me use

their unpublished results. I thank Andrej Bogdanov, Arbel Peled and

Alon Rosen for introducing me to this construction. I also thank Avi

Ben-Aroya, Andrej Bogdanov, Dean Doron, Michael Forbes, Rus-

sell Impagliazzo, Arbel Peled, Omer Reingold, Alon Rozen, Ronen

Shaltiel, Chris Umans and David Zuckerman for many interesting

discussions about the topic in general and this work in particular,

and Dean Doron for detailed comments and suggestions for a �rst

a version of this paper. I owe special thanks for the anonymous

referee of the STOC 2008 paper “A combinatorial construction of

almost-Ramanujan graphs using the zig-zag product” with Avi Ben-

Aroya. His/her suggestions greatly simplify the construction and

also improve the parameters the construction achieves. I also thank

the Israel Science Foundation for supporting this research (ISF grant

no. 994/14).

REFERENCES
[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. 2004. PRIMES is in P. Annals

of mathematics (2004), 781–793.

[2] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. 1992. Construction of asymp-

totically good, low-rate error-correcting codes through pseudo-random graphs.

IEEE Transactions on Information Theory 38 (1992), 509–516.

[3] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. 1992. Simple Constructions of Al-

most k–wise Independent Random Variables. Random Structures and Algorithms
3, 3 (1992), 289–303.

[4] N. Alon, A. Lubotzky, and A. Wigderson. 2001. Semi-direct product in groups

and zig-zag product in graphs: connections and applications. In Proceedings of
the 42nd FOCS. 630–637.

[5] N. Alon, O. Schwartz, and A. Shapira. 2007. An Elementary Construction of

Constant Degree Expanders. In SODA. 454–458.

[6] A. Ben-Aroya and A. Ta-Shma. 2011. A combinatorial construction of almost-

Ramanujan graphs using the zig-zag product. SIAM J. Comput. 40, 2 (2011),

267–290.

[7] A. Ben-Aroya and A. Ta-Shma. 2013. Constructing Small-Bias Sets from

Algebraic-Geometric Codes. Theory of Computing 9, 5 (2013), 253–272.

[8] A. Bogdanov. 2012. A di�erent way to improve the bias via expanders. Topics in

(and out) the theory of computing, Lecture 12. (2012).

[9] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. 2002. Randomness

Conductors and Constant-Degree Expansion Beyond the Degree / 2 Barrier. In

STOC. 659–668.

[10] I. Dinur. 2007. The PCP theorem by gap ampli�cation. Journal of the ACM
(JACM) 54, 3 (2007), 12.

[11] D. Gillman. 1998. A Cherno� bound for random walks on expander graphs.

SIAM J. Comput. 27, 4 (1998), 1203–1220.

[12] S. Hoory, N. Linial, and A. Wigderson. 2006. Expander graphs and their applica-

tions. Bulletin of the AMS 43, 4 (2006), 439–561.

[13] J. Justesen. 1972. Class of constructive asymptotically good algebraic codes. IEEE
Transactions on Information Theory 18, 5 (1972), 652–656.

[14] A. Lubotzky, R. Philips, and P. Sarnak. 1988. Ramanujan Graphs. Combinatorica
8 (1988), 261–277.

[15] J. Naor and M. Naor. 1993. Small–Bias Probability Spaces: E�cient Constructions

and Applications. SIAM J. Comput. 22, 4 (1993), 838–856.

[16] A. Nilli. 1991. On the second eigenvalue of a graph. Discrete Mathematics 91, 2

(1991), 207–210.

[17] Anonymous Referee. 2009. Reperee report. Private communication from the

STOC 2009 committee. (2009).

[18] O. Reingold. 2008. Undirected connectivity in log-space. Journal of the ACM
(JACM) 55, 4 (2008), 17.

[19] O. Reingold, S. Vadhan, and A. Wigderson. 2002. Entropy waves, the zig-zag

graph product, and new constant-degree expanders. Annals of Mathematics 155,

1 (2002), 157–187.

[20] E. Rozenman and S. Vadhan. 2005. Derandomized squaring of graphs. In RAN-
DOM. 436–447.

[21] V. Shoup. 1990. New algorithms for �nding irreducible polynomials over �nite

�elds. Math. Comp. 54, 189 (1990), 435–447.

[22] M. Sudan. 2001. Algorithmic introduction to coding theory, Lecture 6.

http://people.csail.mit.edu/madhu/FT01/scribe/lect6.ps. (2001).

[23] A. Ta-Shma. 2017. Explicit, Almost optimal, epsilon Balanced Codes. Technical

Report. ECCC TR17-041.

[24] N. Tchudako�. 1936. On the di�erence between two neighbouring prime numbers.

Rec. Math. [Mat. Sbornik] NS 1, 6 (1936), 799–814.

251

	Abstract
	1 Introduction
	1.1 Random Walks are Parity Samplers
	1.2 Why Do We Get the O(k4) Bound?
	1.3 The Replacement Product
	1.4 Protecting From the Action of
	1.5 Using the s-wide Replacement Product
	1.6 The Parameters
	1.7 Concluding Remarks and Thoughts

	2 Preliminaries
	2.1 Epsilon-biased Sets
	2.2 Rotation Maps
	2.3 Expanders and Spectral Gap
	2.4 The s-wide Replacement Product
	2.5 Miscellaneous Notation

	3 Amplifying Bias With a Random Walk
	3.1 The Construction
	3.2 Expressing the Bias Algebraically

	4 Efficient Error Reduction
	4.1 The s-wide Walk
	4.2 A Top-down View of the Proof

	5 Instantiating Parameters
	5.1 Bias
	5.2 Support Size
	5.3 What Have We Omitted So Far?

	6 Understanding s-1 …0
	6.1 Bounding "026B30D s-1…0"026B30D

	7 H is Pseudo-random
	8 Explicitness
	8.1 Primes and Irreducible Elements
	8.2 AGHP and Justensen
	8.3 Explicit Expanders

	References

