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Abstract. The rendezvous problem in graphs has been extensively stud-
ied in the literature, mainly using a randomized approach. Two mobile
agents have to meet at some node of a connected graph. We study deter-
ministic algorithms for this problem, assuming that agents have distinct
identifiers and are located in nodes of an unknown anonymous connected
graph. Startup times of the agents are arbitrarily decided by the adver-
sary. The measure of performance of a rendezvous algorithm is its cost:
for a given initial location of agents in a graph, this is the number of
steps since the startup of the later agent until rendezvous is achieved.
Deterministic rendezvous has been previously shown feasible in arbitrary
graphs [16] but the proposed algorithm had cost exponential in the num-
ber n of nodes and in the smaller identifier l, and polynomial in the
difference τ between startup times. The following problem was stated
in [16]: Does there exist a deterministic rendezvous algorithm with cost
polynomial in n, τ and in labels L1, L2 of the agents (or even polynomial
in n, τ and log L1, log L2)? We give a positive answer to both problems:
our main result is a deterministic rendezvous algorithm with cost poly-
nomial in n, τ and log l. We also show a lower bound Ω(n2) on the cost
of rendezvous in some family of graphs.

1 Introduction

Two mobile agents located in nodes of an undirected connected graph, have
to meet at some node of the graph. This task is known in the literature as
the rendezvous problem in graphs, and in this paper we study deterministic
algorithms to solve it efficiently. If nodes of the graph are labeled then agents
can decide to meet at a predetermined node and the rendezvous problem reduces
to graph exploration. However, if the graph models an unknown environment,
a unique labeling of nodes may not be available, or agents may be unable to
recognize node labels. Hence it is important to design rendezvous algorithms for
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agents operating in anonymous graphs, i.e., graphs without unique labeling of
nodes. Clearly, the agents must be capable of locally distinguishing ports at a
node: otherwise, it may even be impossible to visit all neighbors of a node of
degree 3 (after visiting the second neighbor, it is impossible to distinguish the
port leading to the first visited neighbor from that leading to the unvisited one).
Consequently, agents initially located at two such nodes, might never be able to
meet. Hence we make a natural assumption that all ports at a node are locally
labeled 1, . . . , d, where d is the degree of the node. No coherence between local
port labelings is assumed. We do not assume any knowledge of the topology of
the graph, of its size, or of the distance separating the agents.

1.1 The Model

Synchrony and Startup Times. Agents move in synchronous steps. In every
step, an agent may either remain in the same node or move to an adjacent
node. We assume that startup times of the agents are arbitrarily decided by an
adversary. Agents are not aware of the difference between startup times, and
each of them starts executing the rendezvous algorithm and counting steps since
its own startup. The agent who starts earlier and happens to visit the starting
node of the later agent before the startup of this later agent, is not aware of this
fact, i.e, we assume that agents are created at their startup time rather than
waiting in the node before it.

Adversarial Decisions and Cost of Rendezvous. An agent, currently lo-
cated at a node, is not aware of the other endpoints of yet unexplored incident
edges. If the agent decides to traverse such a new edge, the choice of the actual
edge belongs to the adversary, as we are interested in the worst-case performance.
If agents get to the same node in the same round, they become aware of it and
rendezvous is achieved. The cost of a rendezvous algorithm, for a given initial
location of agents in a graph, is the worst-case number of steps since the startup
of the later agent until rendezvous is achieved, where the worst case is taken over
all adversary decisions, whenever an agent decides to explore a new edge adjacent
to a currently visited node, and over all possible startup times. In particular,
time of local computations performed by agents does not contribute to cost.

Labels and Local Knowledge. If agents are identical, i.e., they do not have
distinct identifiers, and execute the same algorithm, then deterministic ren-
dezvous is impossible even in the simplest case of simultaneously starting agents
in a two-node graph. Hence we assume that agents have distinct labels, which are
two different integers, and that every agent knows its own label. (For technical
reasons we assume that labels are larger than 1. This assumption can be easily
omitted.) If both agents knew both labels, the problem could be again reduced to
that of graph exploration: the agent with smaller label does not move, and the
other agent searches the graph until it finds it. (This strategy is sometimes called
“wait for mommy”.) However, the assumption that agents know each other may
often be unrealistic, as they may be created in different parts of the network
in a distributed fashion, oblivious of each other. Hence we assume that each
agent knows its own label but does not know the label of the other. The only
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initial input of a (deterministic) rendezvous algorithm executed by an agent is
the agent’s label. During the execution of the algorithm, an agent learns the
local port number by which it enters a node and the degree of the node.

Notation. Labels of agents are denoted by L1 and L2. The agent with label
Li is called agent i. (An agent does not know its number, only the value of its
label). Labels are distinct integers larger than 1. l denotes the smaller of the
two labels. The difference between startup times of the agents is denoted by τ .
We use the word “graph” to mean a simple undirected connected graph with
local port labelings but without node labels. n denotes the number of nodes in
the graph.

1.2 Our Results

In [16], deterministic rendezvous was considered under the above described
model. The authors formulated the following two questions:

Q1. Is rendezvous feasible in arbitrary graphs?
Q2. If so, can it be performed in cost polynomial in n, τ , L1 and L2 (or even

polynomial in n, τ , log L1 and log L2)?

They gave an affirmative answer to the first question but their rendezvous
algorithm had cost exponential in n and l (and polynomial in τ). The second
question was left open.

We give a positive answer to both versions of this question. Our main result
is a deterministic rendezvous algorithm with cost polynomial in n, τ and log l.
The algorithm contains a non-constructive ingredient: agents use combinatorial
objects whose existence we prove by the probabilistic method. Nevertheless our
algorithm is indeed deterministic. Both agents can find separately the same com-
binatorial object with desired properties (which is then used in the rendezvous
algorithm). This can be done using brute force exhaustive search which may
be quite complex but in our model only moves of the agents are counted and
computation time of the agents does not contribute to cost. Moreover, it should
be noticed that finding this combinatorial object can be done a single time at
a preprocessing stage, the object can be stored in agents’ memory and subse-
quently used in many instances of the rendezvous problem. We also show a lower
bound Ω(n2) on rendezvous cost in some family of graphs.

The paper is organized as follows. In Section 2 we construct a simpler ren-
dezvous algorithm polynomial in n, τ and l (instead of log l). We do this to first
present the main idea of the algorithm and of its analysis without additional
complications needed to decrease the cost. In Section 3 we show how to modify
this algorithm, in order to decrease its cost to polynomial in n, τ and log l. In
Section 4 we establish the lower bound Ω(n2) on rendezvous cost in some family
of graphs. Section 5 contains conclusions and open problems.

1.3 Related Work

The rendezvous problem has been introduced in [23]. The vast body of re-
sults on rendezvous (see the book [4] for a complete discussion and more ref-
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erences) can be divided into two classes: papers considering the geometric sce-
nario (rendezvous in the line, see, e.g., [11, 12, 19], or in the plane, see, e.g.,
[9, 10]), and those discussing rendezvous in graphs, e.g., [2, 5]. Most of the papers,
e.g., [2, 3, 7, 11, 20] consider the probabilistic scenario: inputs and/or rendezvous
strategies are random. In [20] randomized rendezvous strategies are applied to
study self-stabilized token management schemes. Randomized rendezvous strate-
gies use random walks in graphs, which have been widely studied and applied
also, e.g., in graph traversing [1], on-line algorithms [14] and estimating volumes
of convex bodies [17]. A natural extension of the rendezvous problem is that of
gathering [18, 20, 22, 24], when more than 2 agents have to meet in one location.

Deterministic rendezvous with anonymous agents working in unlabeled graphs
but equipped with tokens used to mark nodes was considered e.g., in [21]. In [25]
the authors considered rendezvous of many agents with unique labels. Although
one of their scenarios is deterministic, it differs from our setting in that agents
know the graph and they know a finite set containing the team of agents that
are supposed to meet. Deterministic rendezvous in unlabeled graphs, assuming
that each agent knows only its own identity, was considered in [16]. The au-
thors considered rendezvous under the scenario adopted in the present paper,
and under another scenario which additionally assumed simultaneous startup.
They gave efficient rendezvous algorithms for trees and rings and proved feasi-
bility of rendezvous for arbitrary graphs. In the case of arbitrary startup times
(which we assume in the present paper) their algorithm for arbitrary graphs was
exponential in n and l (and polynomial in τ).

2 A Rendezvous Algorithm Polynomial in n, τ and l

2.1 Deterministic Polynomial Covering of a Graph

A walk of length k in a graph is a sequence (v1, ..., vk) of nodes such that node vi+1

is adjacent to vi, for all i < k. A covering walk is a walk in which every node of the
graph appears at least once. The aim of this subsection is to give a deterministic
procedure, using a number of steps polynomial in n which, when started in any
node of an unknown graph with at most n nodes, produces a covering walk in
this graph. This procedure will be an important ingredient in our rendezvous
algorithms.

Define a random walk of an agent in graph G as a walk in which the agent,
currently located at a node of degree d, acts in the next step as follows: it
remains in the node with probability 1/2 and moves through any port with the
same probability 1/(2d). The cover time of the graph G during a random walk
starting at node v is the random variable denoting the smallest number of steps
after which the agent performing this walk visits all nodes of the graph. The
meeting time of two agents performing simultaneous random walks in graph G,
starting at nodes v and w, is the random variable denoting the smallest number
of steps after which agents performing these walks meet at some node.

We will use the following Lemma proved in [15]:
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Lemma 1. There exists a constant α > 0 such that the probability of each of
the following events is at least 1/2:
Event E1: the cover time of graph G with n nodes during the random walk starting
at any node, is at most αn3.
Event E2: the meeting time of two agents performing simultaneous random walks
in graph G with n nodes, is at most αn3, for any starting nodes.

Let α be the constant from Lemma 1. Let λ(n) = �2αn5 log n�. The next
lemma shows a useful property of a random walk (the proof is omitted).

Lemma 2. A random walk of length λ(n) starting at node v in a graph G with
at most n nodes is a covering walk, with probability at least 1 − 2−2n2 log n.

For any positive integer n and any function hn : {1, ..., λ(n)} × {1, ..., n −
1} −→ {0, 1, ..., n− 1}, such that hn(i, d) ≤ d, we define the following procedure
describing a walk of length λ(n) in a graph G, starting at a node v (cf. the upper
bound for the length of a universal traversal sequence [1]).

Procedure GraphCover(n, hn)
In step i ≤ λ(n), the agent, currently located at a node of degree d, moves
to an adjacent node by port hn(i, d), or remains idle if hn(i, d) = 0. After
step λ(n) it stops.

Lemma 3. For any n, there exists a function hn :{1, ..., λ(n)}×{1, ..., n−1} −→
{0, 1, ..., n − 1}, such that hn(i, d) ≤ d and the Procedure GraphCover(n, hn)
starting at any node of any graph G with at most n nodes, produces a covering
walk in this graph.

Proof. Fix n. Fix a graph G with at most n nodes and fix some starting node v
in G. We can do it in at most nn2 · n ≤ 2n2(log n+1) different ways, for fixed n.
Applying Lemma 2, the probability of the event ‘there exists a graph G with at
most n nodes and a starting node v in G, such that the random walk of length
λ(n) in graph G starting in v is not a covering walk’ is at most

2−2n2 log n · 2n2(log n+1) ≤ 2−n .
Using the probabilistic argument we prove the existence of the desired func-

tion, which completes the proof. �

Note that the problem of construction of function hn satisfying Lemma 3 is
hard (cf. hardness of a construction of a universal traversal sequence even for
3-regular graphs [13]).

In our applications to rendezvous algorithms, agents will use Procedure
GraphCover(n, hn) producing a covering walk in any graph with at most n
nodes. To this end we want each of the agents to find the same function hn whose
existence is guaranteed by Lemma 3. (This can be done by exhaustive search,
ordering all such possible functions in a canonical way and checking them one
by one to find the first suitable one. Recall that, according to our model, only
moves of the agents are accounted for, and computation time of the agents does
not contribute to rendezvous cost.) Let ĥn be the first function in this canoni-
cal ordering, satisfying Lemma 3, for any n. To simplify notation, we will write
GraphCover(n) instead of GraphCover(n, ĥn), throughout the paper.
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2.2 Construction and Analysis of Rendezvous Algorithm PA
In order to design rendezvous algorithm PA, we will use procedure Graph-
Cover(n), which takes λ(n) = �2αn5 log n� steps and produces a covering walk
in any graph with at most n nodes.

We will show that the following algorithm completes rendezvous in any n-
node graph, for agents with arbitrary labels L1, L2, with arbitrary delay τ , in
cost polynomial in n, l = min{L1, L2} and τ .
Algorithm PA (PassiveActive) for agent with label L.
For k = 1, 2, . . . do

Passive Phase: Wait for 2Lk steps
Active Phase:

– Perform GraphCover(Lk), starting from the current node in the
graph

– Perform L times GraphCover(k), always starting from the current
node in the graph

Let k0 = λ(n). The idea of the algorithm is to guarantee that one of the
agents is passive while the other agent L performs GraphCover(k0) and thus
completes rendezvous. (We refer to this situation by saying that the active agent
meets the passive agent – an asymmetric relation.) This is the reason for having
increasing time segments of activity and passivity. The turn of the “for” loop
for a given k will be called the kth epoch of the agent. The kth epoch of agent
with label L has two phases of equal length 2Lk: the passive phase and the
active phase. The active phase is composed of an execution of GraphCover(Lk)
followed by L executions of GraphCover(k). This is the subtle point in the
algorithm design: it seems that none of these parts alone (one long execution of
GraphCover or many short executions of it) permits to guarantee rendezvous
in cost polynomial in n, l and τ .

We analyze the performance of algorithm PA as a function of n, l and τ . Let
G be an n-node graph and L1, L2 the labels of agents. Without loss of generality
assume that L1 > L2 = l. We start counting time steps from the startup of the
later agent. For every step t denote by ki(t), for i = 1, 2, the number of epoch
executed by agent i in step t. We will use the following fact, which follows from
the Properties of GraphCover(k), and from the definition of k0.

Fact 1 1. If one agent starts its active phase of epoch k in time t, where
L1k ≥ 2k0, and the other agent is in the passive phase during the time segment
[t, t + k0), then rendezvous is completed by step t + k0.

2. Assume k ≥ k0. If one agent is in the second half of its active phase of
epoch k in the time segment [t, t+2k0), and the other agent is in a passive phase
during the time segment [t, t + 2k0), for some t, then rendezvous is completed by
step t + 2k0.

3. Assume k ≥ k0. If one agent ends its active phase of epoch k in time t,
and the other agent is in a passive phase during the time segment (t−k0, t], then
rendezvous is completed by step t.

The following lemma estimates cost of rendezvous under some technical con-
ditions (the proof will appear in the full version of the paper).
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Lemma 4. Let t1, t2 be steps ending epochs k1(t1), k2(t2) of the first and second
agent, respectively. Assume that L1k1(t1) ≥ 40k0, k2(t2) ≥ 10k0, |t1 − t2| ≤
4k0 and |L1k1(t1) − L2k2(t2)| ≤ 2k0. Then rendezvous is completed by step
t2 + 26lk2(t2)k0.

The next three lemmas estimate the time step by which rendezvous is com-
pleted, depending on the number of epoch changes of one agent during one epoch
of the other (their proofs will appear in the full version of the paper).
Lemma 5.

1. Let t be the beginning of epoch k1(t) of the first agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the second agent ends its epoch only once
during epoch k1(t) of the first agent, then rendezvous is completed by step t +
11lk2(t) + 26lk2(t)k0.

2. Let t be the beginning of epoch k2(t) of the second agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the first agent ends its epoch only once
during epoch k2(t) of the second agent, then rendezvous is completed by step
t + 11lk2(t) + 26lk2(t)k0.

Lemma 6.
1. Let t be the beginning of epoch k1(t) of the first agent and assume that

L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the second agent ends its consecutive epochs
twice during epoch k1(t) of the first agent, then rendezvous is completed by step
t + 14lk2(t) + 26lk2(t)k0.

2. Let t be the beginning of epoch k2(t) of the second agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the first agent ends its consecutive epochs
twice during epoch k2(t) of the second agent, then rendezvous is completed by
step t + 14lk2(t) + 26lk2(t)k0.

Lemma 7.
1. Let t be the beginning of epoch k1(t) of the first agent and assume that

L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the second agent ends its consecutive epochs
at least three times during epoch k1(t) of the first agent, then rendezvous is
completed by the end of epoch k2(t) + 1 of the second agent, which is at most
t + 9lk2(t).

2. Let t be the beginning of epoch k2(t) of the second agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the first agent ends its consecutive epoch
at least three times during epoch k2(t) of the second agent, then rendezvous is
completed by the end of epoch k1(t) + 1 of the first agent, which is at most
t + 4lk2(t).

Theorem 1. Algorithm PA solves the rendezvous problem for any n-node graph
G, for any labels L1 > L2 = l of agents and any delay τ between startup times,
in cost O(

√
lτn5 log n + ln10 log2 n).

Proof. Let t1 be the first step for which L1k1(t1) ≥ 40k0. Let t2 ≥ t1 be the
first step for which k2(t2) ≥ 10k0. Observe that ti is the beginning of epoch
ki(ti) of the ith agent. Consider the step t∗ = t2 + (t2 − t1) + 8L2k2(t2) =
2t2 + 8L2k2(t2) − t1. We have t∗ > t2 ≥ t1, hence k1(t1) ≤ k1(t∗). Consider two
cases.
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Case A. k1(t1) = k1(t∗).
We have the inclusion [t2, t2 + 4L2k2(t2)] ⊆ [t1, (t1 + t∗)/2]. Hence the epoch

k2(t2) of the second agent is included in the passive phase of epoch k1(t1) of the
first agent. We use Fact 1 point 1 to obtain that rendezvous is completed during
epoch k2(t2) of the second agent. Hence rendezvous cost is O(t2 +L2k2(t2)). By
definition of t1 we get that t1 ∈ O(k2

0) = O(n10 log2 n).
If t2 > t1 then k2(t1) < 10k0, and consequently k2(t2) = 10k0. Hence t2 =

O(L2k
2
0) ∈ O(ln10 log2 n). On the other hand, L2k2(t2) ∈ O(ln5 log n).

If t2 = t1 then t2 ∈ O(n10 log2 n). On the other hand we have

4L2(k2(1) + 1) + . . . + 4L2(k2(t2) − 1) ≤ t2 .

Hence k2(t2) − k2(1) ∈ O(
√

t2/L2). It follows that L2k2(t2) ∈ O(L2(k2(1) +√
t2/L2)). Since τ ∈ Ω(L2(k2(1))2), we get that k2(1) ∈ O(

√
τ/L2), and hence

rendezvous cost is

O(t2+L2k2(t2)) ⊆ O(t2+L2

√
τ/L2+L2

√
t2/L2) ⊆ O(n10 log2 n+

√
lτ+

√
ln5 log n).

Consequently, in both situations, rendezvous cost is O(ln10 log2 n +
√

lτ).

Case B. k1(t1) < k1(t∗).
In this case we have that t2 ∈ O(k2

0l) and k2(t2) ∈ O(
√

τ/l + k0). Below we
give the proof of this statement in all possible situations.

– L1k1(1) ≥ 40k0 and k2(1) ≥ 10k0. In this case t2 = t1 = 1. We also have
τ ∈ Ω(L2(k2(1))2), and consequently k2(t2) = k2(1) ∈ O(

√
τ/l).

– L1k1(1) ≥ 40k0 and k2(1) < 10k0. In this case t1 = 1 and t2 ∈ O(L2k
2
0) =

O(lk2
0). Also k2(t2) ∈ O(k0).

– L1k1(1) < 40k0 and k2(1) ≥ 10k0. In this case L1(k1(t1) − 1) < 40k0,
which implies that t1 ∈ O(L1(k1(t1))2) ⊆ O(k2

0/L1). Also t2 = t1, which
gives t2 ∈ O(k2

0). On the other hand, τ ∈ Ω(L2(k2(1))2), and consequently
k2(t2) ∈ k2(1) + O(k0) ⊆ O(

√
τ/l + k0).

– L1k1(1) < 40k0 and k2(1) < 10k0. In this case L1(k1(t1) − 1) < 40k0, which
implies that t1 ∈ O(L1(k1(t1))2) ⊆ O(k2

0/L1). Also t2 ∈ t1 + O(L2k
2
0) =

O(lk2
0). On the other hand, k2(t2) ≤ k2(t1)+ 10k0 ∈ k2(1)+O(k0) = O(k0).

Let t be the first step after t2 in which an epoch of the first agent starts. Notice
that, by the assumption k1(t1) < k1(t∗), we have t ≤ t2 + t∗, and consequently
t ∈ O(t2 + L2k2(t2)). Hence k2(t) ∈ O(k2(t2)). Consider times t′1, t

′
2 > t such

that t′i is the end of epoch ki(t), for i = 1, 2.
Subcase B1. t′1 ≤ t′2.
Consider epoch k2(t) of the second agent. By definition of step t, this epoch
starts not earlier than t2. Since t′1 ≤ t′2, we have that the first agent ends its
epoch at least once during epoch k2(t) of the second agent. Applying point 2 of
one of the Lemmas 5, 6 and 7, depending on the number of epoch changes of
the first agent in epoch k2(t2), we obtain that rendezvous cost is at most

t + 18lk2(t) + 26lk2(t)k0 ∈ O(t2 + L2k2(t2)) + O(lk2(t2)) + O(lk2(t2)k0) ⊆
⊆ O(k2

0l + l(
√

τ/l + k0) + l(
√

τ/l + k0)k0) = O(
√

lτn5 log n + ln10 log2 n) .
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Subcase B2. t′1 > t′2.
Consider epoch k1(t) of the first agent. It starts in step t ≥ t2. Since t′1 > t′2,
we have that the second agent ends its epoch at least once during epoch k1(t)
of the first agent. Applying point 1 of one of the Lemmas 5, 6 or 7, depending
on the number of epoch changes of the second agent in epoch k1(t1), we obtain
that rendezvous cost is at most

t + 18lk2(t) + 26lk2(t)k0 ∈ O(t2 + L2k2(t2)) + O(lk2(t2)) + O(lk2(t2)k0) ⊆
⊆ O(lk2

0 + l(
√

τ/l + k0) + l(
√

τ/l + k0)k0) ⊆ O(
√

lτn5 log n + ln10 log2 n) ,

the same asymptotic bound as in Subcase B1. �

3 A Rendezvous Algorithm Polynomial in n, τ and log l

In this section we design and analyze a modification of Algorithm PA which
works in cost polynomial in n, τ and log l, rather than polynomial in n, τ and l.
The modified algorithm has two non-constructive ingredients: the function de-
termining the covering walk, already used in Procedure GraphCover(n) and
another one, used in the new procedure TRAVERSE described below. (As before,
the new combinatorial object (a family of functions) whose existence we prove
using again the probabilistic method, can be found by each of the agents sepa-
rately, using local exhaustive search.) Similarly as before, our algorithm remains
deterministic.

Assume that, for every label L and positive integer k, we have a function fL,k :
{1, ..., k�log L�}×Z

+ → Z
+∪{0} such that fL,k(i, d) ≤ d for any positive integers

i, d. We call such a function a port-function. The interpretation of fL,k(i, d) is the
port number used by agent with label L in the ith step of graph traversal with
parameter k, if the agent is currently at a node of degree d (the value 0 indicates
that the agent remains at the current node). According to this intuition we
define the procedure TRAVERSE. For a non-negative integer t and for a positive
integer k, define T (k, t) as the set of all infinite sequences (t1, . . . , tk, . . .) of non-
negative integers such that t1 + . . . + tk = t and ti = 0 for every i > k. For a
given label L, integers k > 0 and t ≥ 0, fix t̄ ∈ T (k, t) and define:
Procedure TRAVERSE(L, k, t̄)
For i = 1, 2, . . . , k do initialize counti := ti (ti is the ith value of t̄)
For j = 1, 2, . . . , k�log L� do

Set d to the degree of the current node (if d > k and countd not initialized
then initialize countd := 0)

Set countd := countd + 1
If fL,k(countd, d) > 0 then Go using port fL,k(countd, d)
The intuition behind the parameter t̄ in the above procedure is the following.

For every d, we suppose that, before starting procedure TRAVERSE, td first port
choices in nodes of degree d, yielded by the function fL,k, were already executed.
Hence this introduces a shift of procedure TRAVERSE by t steps back, assuming
that td nodes of degree d were already visited. In the algorithm we will only use
TRAVERSE for parameter 0̄ (hence no shift at all) but in the analysis we will
consider executions of TRAVERSE shifted in time with respect to each other,
and hence this more general formulation of the procedure will become useful.
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The following algorithm uses procedure TRAVERSE, which in turn depends
on a family of port-functions. We will use the algorithm for such a family of
functions with a specially defined property.

Algorithm MPA (Modified PassiveActive) for agent with label L.
For k = 1, 2, . . . do

Passive Phase: Wait for 2 · 2�log L�k steps
Active Phase:

First Stage: Perform GraphCover(�log L�k), starting from the cur-
rent node in the graph

Middle Stage: Perform TRAVERSE(L, k, 0̄)
Last Stage: Perform 2�log L� times GraphCover(k), always starting

from the current node in the graph

3.1 Choosing Port-Functions
As before, the turn of the “for” loop for a given k will be called the kth epoch
of the agent. Let G be an n-node graph, v1, v2 two nodes in G, t a non-negative
integer, ind ∈ {1, 2}, t̄ ∈ T (k1, t), if ind = 1 and t̄ ∈ T (k2, t) otherwise.
Execute(L1, k1, L2, k2, G, v1, v2, t̄, ind), denotes the execution of procedures

– TRAVERSE(L1, k1, t̄) and TRAVERSE(L2, k2, 0̄) if ind = 1
– TRAVERSE(L1, k1, 0̄) and TRAVERSE(L2, k2, t̄) if ind = 2

by agents operating in graph G, where procedure TRAVERSE(L1, k1, ·) starts in
node v1 and procedure TRAVERSE(L2, k2, ·) starts in node v2. We assume that
procedure Execute is performed until one of the agents completes its procedure
TRAVERSE.

Let α > 0 be the constant from Lemma 1 and let k0 = �2αn5 log n� be as in
Section 2. We say that a family of port-functions {fL,k : k ∈ Z

+, L = 2, 3, . . .}
is a rendezvous family, if the following property is satisfied:

RV for all labels L1 > L2 such that �log L1� = �log L2�, all parameters k1 =
k2, for every n such that 10αn5 log n ≤ k1, every n-node graph G, for all starting
nodes v1, v2, any sequence t̄ ∈ T (k1, t), where t < 6k0, any ind ∈ {1, 2}, agents
with labels L1, L2 meet during procedure Execute(L1, k1, L2, k2, G, v1, v2, t̄, ind).

Recall that, in view of Lemma 3 and of the choice of α, procedure Graph-
Cover(n), lasting k0 steps, produces a covering walk in any graph G with n nodes.

Our goal is to show the existence of a rendezvous family. The proof uses the
probabilistic method and requires the analysis of simultaneous random walks of
two agents in a graph. The proofs of the next two lemmas will appear in the full
version of the paper.

Lemma 8. Let L be a positive integer. For a given n-node graph G, consider
two simultaneous random walks of length 10αn5 log n log L, started in any nodes
v1, v2 of graph G. The agents meet in some node with probability at least 1 −
2−10n2 log n log L.

Lemma 9. There exists a rendezvous family of port-functions {fL,k : k ∈ Z
+,

L = 2, 3, . . .}.
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3.2 Analysis of Algorithm MPA
In view of Lemma 9 we can use a rendezvous family of port-functions as a basis
for algorithm MPA. The rest of our analysis assumes that MPA uses such a fixed
family (which agents can compute locally), and hence we assume that property
RV is satisfied. Notice that, in the proof of Lemma 9, we used the probabilistic
method for fixed k, L and n. The function fL′,k of an agent with label L′, such
that L/2 < L′ ≤ L, has the domain bounded by nk log L and the range bounded
by n. The agent may have to compute all such functions fL′′,k, for L/2 < L′′ ≤ L.
This can be done locally in time exponential in nk log L log n. Recall that local
computations do not affect rendezvous cost in our model.

Our next lemma corresponds to Lemma 4 in the analysis of algorithm PA.
The proof will appear in the full version of the paper.
Lemma 10. Let t1, t2 be steps ending epochs k1(t1), k2(t2) of the first and second
agent, respectively. Assume that �log L1� = �log L2�, |�log L1�k1(t1) − �log L2�
k2(t2)| < 2k0, k1(t1), k2(t2) ≥ 10αn5 log n and |t1 − t2| < 6k0. Then rendezvous
is completed by step t2.

Theorem 2. Algorithm MPA solves the rendezvous problem for any n-node
graph G, for any labels L1 > L2 = l of agents and for any delay τ between
startup times, in cost O(n5

√
τ log l log n + n10 log2 n log l).

The proof of Theorem 2 will appear in the full version of the paper.

4 A Lower Bound

The sharpest lower bound for deterministic rendezvous proved in [16] was
Ω(n log l). More precisely, the fact that rendezvous sometimes requires this cost
follows from the lower bound Ω(D log l) proved in [16] for agents starting at
distance D in a ring. We show that, in some graphs with Θ(n2) edges, the cost
of rendezvous is Ω(n2), i.e., a large part of the graph has to be explored before
agents can meet. The proof will appear in the full version of the paper.

Theorem 3. For all positive integers n and any labels L1 and L2, there exists
an n-node graph Gn such that rendezvous cost in Gn for agents with labels L1

and L2 is Ω(n2).

5 Conclusion

Our main result was the design and analysis of a deterministic rendezvous al-
gorithm polynomial in n, τ and log l. This answers affirmatively question Q2
from [16]. Our algorithm requires exhaustive local search by each agent to find
an object whose existence is proved using the probabilistic method. While local
computations (even possibly very extensive), do not affect cost in our model, it
is interesting to know if there is a deterministic rendezvous algorithm with cost
polynomial in n, τ , log l whose local computations also take polynomial time.

Another open problem concerns the dependence of rendezvous cost on the
parameter τ (the difference between startup times). We showed a lower bound
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Ω(n2) on rendezvous cost in some graphs. It was shown in [16] that cost Ω(log l)
is required even for the two-node graph. It was also shown in [16] that, for agents
starting at distance Ω(n) in a ring, cost Ω(n log l) is required, even for τ = 0.
However, we do not know if any non-constant function of τ is a lower bound on
rendezvous cost in some graphs. (Recall that the cost of our algorithm contains
a factor

√
τ .) Hence the following problem remains open:

Does there exist a deterministic rendezvous algorithm whose cost is poly-
nomial in n and l (or even in n and log l) but independent of τ?
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