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It was recently shown that SVD and matrix inversion can be approximated in quantum log-
space [1] for well formed matrices. This can be interpreted as a fully logarithmic quantum 
approximation scheme for both problems. We show that if prBQL = prBPL then every fully 
logarithmic quantum approximation scheme can be replaced by a probabilistic one. Hence, 
if classical algorithms cannot approximate the above functions in logarithmic space, then 
there is a gap already for languages, namely, prBQL �= prBPL.
On the way we simplify a proof of Goldreich for a similar statement for time bounded 
probabilistic algorithms. We show that our simplified algorithm works also in the space 
bounded setting (for a large set of functions) whereas Goldreich’s approach does not seem 
to apply in the space bounded setting.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Two well known approximation problems are approxi-
mating the singular value decomposition (SVD) of a matrix 
and approximating matrix inverse. Both problems were ex-
tensively studied in the time bounded model, e.g., in [2–4]. 
In the space bounded model it was recently shown that 
SVD and matrix inversion can be additively approximated 
by a quantum algorithm using only logarithmic space [1]. 
This can be interpreted as a fully logarithmic quantum ap-
proximation scheme (with additive accuracy) for the prob-
lems.

The result [1] shows a possible gap between quan-
tum and classical algorithms for the task of approximating 
a function. It is not clear, however, whether it also im-
plies a possible gap between the power of quantum and 
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classical log-space algorithms for decision problems. Thus, 
a natural question is the following. Suppose no classical 
log-space algorithm can approximate the SVD. Does that 
imply that prBQL �= prBPL? In the contra-positive we ask 
whether a “de-quantumization” of decision classes (i.e., 
prBQL = prBPL) implies a de-quantumization of approxi-
mation schemes.

The question was also asked in the model of classical 
time bounded computations. A classical result by Stock-
meyer [5] implies that the problem of approximate counting
of a general NP predicate can be solved in FBPPNP . Shaltiel 
and Umans [6] derandomized the result under the assump-
tion that ENP‖ requires exponential size single-valued non-

deterministic circuits.2

While in general we do not know how to approxi-
mate functions in #P better than in FBPPNP , there exist 
#P-complete functions for which there exists a fully poly-
nomial randomized approximation scheme (FPRAS) that 

2 ENP‖ is the class E with non-adaptive oracle queries to NP. A single-
valued nondeterministic circuit is the nonuniform analogue of NP ∩ coNP.
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does not require an oracle access to an NP language. Jer-
rum, Sinclair and Vigoda [7] proved this for the permanent. 
Goldreich [8] showed that derandomizing the FPRAS for 
the permanent (or any other FPRAS) can be done under 
the assumption that prBPP = P:

Theorem 1. (See [8, Corollary 3.6].) If prBPP = P then every 
function that has an FPRAS also has such a deterministic scheme. 
Furthermore, for every polynomial p, there exists a polyno-
mial p′ such that if the probabilistic scheme runs in time p, then 
the deterministic one runs in time p′.

In [8] Goldreich is after a “uniform” pseudorandom gen-
erator (see [8] for exact details) and Theorem 1 is a corol-
lary of a more general technique used in his construction 
of a uniform PRG. Roughly speaking, Goldreich’s argument 
works as follows: Given a probabilistic Turing machine 
M(x, y) that approximates f (x) well (where x is the in-
put and y is the internal random coins used by M), we 
construct a specific sequence y0 such that M(x, y0) also 
approximates f (x) well. The bits of y are fixed bit by bit, 
where each bit is determined by a single query to a cer-
tain prBPP problem that depends on the random bits that 
were set so far.

In our case we deal with space bounded problems. 
It seems Goldreich’s approach does not generalize to the 
space bounded case, as the random coins string is kept on 
the work tape, and its length is bounded by the time com-
plexity of the Turing machine – which can be polynomial.

In this note we give an alternative (and simpler) 
proof that directly computes the approximated value using 
prBPP oracle calls, and we show this approach does gen-
eralize to a large class of functions in the space bounded 
model. In particular we show that if no probabilistic algo-
rithm can approximately compute the SVD of certain well 
formed matrices3 – a task that quantum algorithms can do 
with logarithmic space – then there is already a separation 
of the decision classes and prBQL �= prBPL. We give an in-
tuitive explanation of our proof technique at the beginning 
of Section 3 followed by a formal argument.

Throughout the paper we use the notations of common 
complexity classes freely. Exact definitions can be found, 
for example, in [9]. For a complexity decision class C , we 
denote prC as the corresponding promise class and FC
as the corresponding function class. In Section 2 we de-
fine space bounded approximation schemes. We remark 
that we are not aware of any previous definition of space 
bounded approximation schemes. In Section 3 we present 
and prove our result.

2. Definitions

We first define approximation for real valued functions 
f : {0,1}� → R. We have two notions of approximation: 
additive and multiplicative. We say y additively approx-
imates f (x) with accuracy δ if y ∈ [ f (x) ± δ]. We say 

3 Specifically, bounded norm matrices with well-separated singular val-
ues. An n × n matrix has well-separated singular values if there exists 
some constant c such that for all i �= j, |σi − σ j | ≥ n−c .
y multiplicatively approximates f (x) with accuracy δ if 
y ∈ [(1 ± δ) f (x)].

We assume (as is customary in previous works) that 
the approximation algorithm M outputs a dyadic ratio-
nal number, i.e., we interpret the string M(x) as the ra-
tional number whose binary representation is the binary 
string M(x). This, in particular, implies that if M has time 
complexity t(n) then M can only output integers whose 
absolute value is at most 2t(n) , and this assumption is 
implicitly used in previous works. This assumption also 
implies that if M(x) is a non-zero rational number then 
|M(x) − 0| ≥ 2−t(n) .

We say a function f is R(n)-bounded if | f (x)| ≤ R(n)

for every x ∈ {0,1}n and some known uniform function R . 
Since we are only interested in functions that can be 
approximated by polynomial time algorithms we can as-
sume w.l.o.g. that R = 2poly(n) , because no polynomial time 
algorithm can approximate a higher value. However, for 
specific functions f sometimes a better bound can be 
taken.

We begin with the time bounded model where it is 
customary to use multiplicative approximation:

Definition 2. A fully polynomial randomized approxima-
tion scheme (FPRAS) for an R(n)-bounded function f :
{0,1}n → [0, R(n)] is a randomized Turing machine M that 
on input x, an accuracy parameter δ and a confidence pa-
rameter ε, runs in poly(|x|, δ−1, logε−1, log R(n)) time and 
outputs M(x) ∈ [(1 ±δ) f (x)] with probability at least 1 −ε, 
where we interpret the string M(x) as the dyadic rational 
number whose binary representation is given by the binary 
string M(x).

A fully polynomial (deterministic) approximation
scheme (FPAS) is obtained if M in the above definition 
is deterministic, ε is set to 0, and the dependence on ε is 
removed.

In this paper we define log-space approximation
schemes, but use additive approximation rather than multi-
plicative approximation, mainly because the major exam-
ples we have for such approximation schemes only achieve 
additive accuracy. We define:

Definition 3. A fully logarithmic randomized (resp. quan-
tum) approximation scheme for an R(n)-bounded func-
tion f : {0,1}n → [−R(n), R(n)] is a randomized (resp. 
quantum) Turing machine M that on input x, an er-
ror parameter δ and a confidence parameter ε, runs 
in poly(|x|, δ−1, logε−1, log R(n)) time, uses O (log |x| +
log δ−1 + log logε−1 + log log R(n)) space and outputs 
M(x) ∈ [ f (x) ± δ] with probability at least 1 − ε.

The quantum space model we use has classical control 
and allows intermediate measurements, see [10,1]. A fully 
logarithmic (deterministic) approximation scheme is ob-
tained if M in the above definition is deterministic, ε is set 
to 0, and the dependence on ε is removed. We let FLAS 
abbreviate “fully logarithmic approximation scheme” and 
FLRAS (resp. FLQAS) the randomized (resp. quantum) ver-
sions.
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If a function f computes a matrix, we say a Tur-
ing machine M approximates f if it approximates each 
entry of the matrix. With additive approximation this 
is equivalent to approximating the matrix in the norm 
‖A‖max = maxi, j |Ai, j |. Notice that if Ã approximates an 
n × n matrix A in the above norm for arbitrary polyno-
mially small δ, then it also approximates A well in the 
spectral norm because ‖A − Ã‖2 ≤ n2‖A − Ã‖max ≤ n2δ.

Under this notation the result in [1] shows that the 
function computing the SVD of a real matrix A that has 
a polynomially bounded norm and well-separated singular 
values and the function inverting a well-conditioned ma-
trix with a non-negligible norm both have an FLQAS. We 
remark that the function computing the SVD of a matrix 
A = U D V with polynomially bounded norm is polynomi-
ally bounded. This is because every singular value D[i, i] =
σi satisfies σi ≤ ‖A‖2 and the entries of the unitary matri-
ces U , V are obviously bounded. The same holds for the 
function computing the inverse of a well-conditioned ma-
trix with a non-negligible norm, as the entries of A−1 are 
bounded by ‖A−1‖2 = κ(A)/‖A‖2 (where κ(A) is the con-
dition number of A).

3. Derandomizing randomized and quantum 
space-bounded approximation schemes

We first reprove Goldreich’s result. We start with an in-
tuitive explanation.

Suppose prBPP = P and f has an FPRAS. By definition, 
there exists a polynomial time probabilistic algorithm M
that on input x and accuracy parameter δ outputs a value 
M(x, δ) that with a good probability is multiplicatively 
δ-close to f (x). Define a promise problem � such that 
〈x, ζ, y〉 is a yes instance if f (x) > (1 + ζ )y and a no 
instance if f (x) ≤ (1 − ζ )y. We see that � ∈ prBPP (be-
cause M essentially solves it) and by our assumption that 
prBPP = P we have � ∈ P.

Having that we can employ a binary search to approx-
imate f (x). We start with the a-priori known lower and 
upper bounds 0 ≤ f (x) ≤ R(n) = 2poly(n) that hold for the 
output of any polynomial time algorithm. We then deter-
mine whether we are in the lower or upper half of this 
interval by calling �. More precisely, if we know f (x)
belongs to the interval [l, h], then with one call to the 
promise problem we can reduce the interval to a new one 
of length roughly ( 1

2 +δ)(h −l). Repeating the binary search 
O (log R(n)/δ) times we deterministically approximate f (x)
with δ multiplicative accuracy.

We now give the formal details:

Theorem 4. Suppose prBPP = P. Then every function f that 
has an FPRAS also has an FPAS.

Proof. Assume f has an FPRAS. Let M be a polynomial 
time probabilistic algorithm that on input x ∈ {0,1}� and 
an accuracy parameter δ given in unary with 1

δ
bits, out-

puts a value M(x, δ) that with probability at least 2/3 is 
multiplicatively δ-close to f (x). We show how to construct 
a deterministic algorithm M ′ that on input x ∈ {0,1}�
and an accuracy parameter δ given in unary with 1 bits, 
δ

outputs a value M ′(x, δ) that is multiplicatively δ-close 
to f (x).

We construct the output M ′(x, ζ ) bit by bit, where each 
bit is determined by a single call to a prBPP promise prob-
lem. Consider the following promise problem �:

Yes instance: 〈x, ζ, y〉 such that f (x) > (1 + ζ )y.
No instance: 〈x, ζ, y〉 such that f (x) ≤ (1 − ζ )y.

� is in prBPP, by the following algorithm: Run M with 
accuracy ζ ′ = ζ/2 and accept if and only if M(x, ζ ′) ≥ y. 
For every 〈x, ζ, y〉 ∈ �Yes, with probability at least 2/3,

M(x, ζ ′) ≥ (1 − ζ ′) f (x) > (1 − ζ ′)(1 + ζ )y ≥ y.

Similarly, for every 〈x, ζ, y〉 ∈ �No, M(x, ζ ′) < y with prob-
ability at least 2/3. As we assume prBPP = P, there exists 
a deterministic algorithm for � that we denote M� .

Let T denote the running time of M on the input 
〈x, δ〉. Set l0 = 0, h0 = 2T and z0 = l0+h0

2 . Notice that 
l0 ≤ f (x) ≤ h0. We now run the following binary search 
for f (x):

For i = 0, . . . , ∞ do:

• If hi < 2−T output 0 and halt.
• If hi−li

hi+li
≤ δ

2 output zi and halt.
• Query M� on 〈x, δ/4, zi〉. If the query is answered pos-

itively, set li+1 = (1 − δ/4)zi and hi+1 = hi . Otherwise, 
set hi+1 = (1 + δ/4)zi and li+1 = li .

• Set zi+1 = (li+1 + hi+1)/2.

First notice that because M� deterministically solves �, 
we always preserve the invariance li ≤ f (x) ≤ hi .

We now claim that if we output a value, then this value 
is a good multiplicative approximation to f (x). To see that 
notice that we halt if either h < 2−T or h−l

h+l ≤ δ
2 . In the 

first case f (x) ≤ h < 2−T . However, if f (x) is non-zero then 
f (x) ≥ 2−T (see Section 2). Hence f (x) = 0 and we output 
the correct value. If the latter condition happens then |z −
f (x)| ≤ δ f (x). To see that notice that f (x) − z ≤ h − z =
h − l+h

2 = h−l
2 = h−l

h+l z ≤ δ
2 z. Similarly, f (x) − z ≥ − δ

2 z. Thus 
| f (x) − z| ≤ δ

2 z which implies z ∈ [(1 ± δ) f (x)].
To show that we always halt and to bound the num-

ber of iterations, let di = hi − li . We claim that di+1 ≤
3
4 di . This is true as di+1 ≤ di

2 + δ
4 zi (immediately from 

the way the procedure works) and di
2 + δ

4 zi ≤ 3
4 di (which 

is true whenever hi−li
hi+li

> δ
2 ). Also, hi−li

hi+li
≤ 2T di (because 

hi ≥ 2−T ). Hence, hi−li
hi+li

≤ 22T ( 3
4 )i and we must stop within 

O (T + log(1/δ)) steps.
Altogether, the running time is O (T + log(1/δ)) times 

the time complexity of M� , which is polynomial in T as 
required. �

A similar procedure works for additive error by appro-
priately changing the promise problem � to work with 
additive accuracy. We give a formal proof of this in The-
orem 5 for the space bounded model, but a similar argu-
ment also works for the time bounded model.

Next, we claim that the same proof works also in the 
space bounded setting as long as the function f is polyno-
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mially bounded, i.e., f : {0,1}n → [−R(n), R(n)] for R(n) =
poly(n). The reason is simple: the space complexity of the 
deterministic machine M ′ constructed in the proof of The-
orem 4 is O (log(

nR(n)
δ

)). Formally,

Theorem 5. Suppose prBPL = L. Then every R = poly(n)-
bounded function f that has an FLRAS has an FLAS as well.

Proof. The proof resembles the proof of Theorem 4. How-
ever, as the approximation is now additive, the promise 
problem � is given by:

Yes instance: 〈x, ζ, y〉 such that f (x) ≥ y + ζ .
No instance: 〈x, ζ, y〉 such that f (x) ≤ y − ζ .

� is in prBPL, by exactly the same algorithm. As prBPL =
L, let M� be the deterministic algorithm for �. We then 
run a similar loop, starting with l ← −R(n) and h ← R(n)

and iterating as long as |h − l| > 2δ while the update for l
and h is done additively.

The correctness follows from very similar reasonings as 
di+1 ≤ di

2 + δ
2 ≤ 3

4 di in every iteration, hence the loop ter-
minates after 	(log δ−1 + log R(n)) iterations.

The time complexity of the FLAS is polynomial in R(n)

and δ−1, as desired. The space required to store l, h and 
z, in addition to the space required to simulate M� is 
bounded by O (log n + log δ−1 + log R(n)). As log R(n) =
O (log n), we also obtain the required space constraint for 
an FLAS. �

The proof of Theorem 5 also generalizes to the quantum 
case, namely,

Theorem 6. Suppose prBQL = prBPL. Then every R = poly(n)-
bounded function f that has an FLQAS has an FLRAS as well.

Proof. Let � be the same promise problem defined in the 
proof of Theorem 5. Then, by the same reasoning as in the 
proof of Theorem 5, � ∈ prBQL. Thus, if prBQL = prBPL
then � ∈ prBPL. We can amplify the success probability of 
the probabilistic algorithm so that it succeeds with proba-
bility at least 1 − ξ for ξ that we choose later.

Run the same binary search algorithm with the ran-
domized algorithm for �, and assume it uses T iterations. 
A similar argument to the one in the proof of Theorem 5
shows that with probability 1 − T ξ the algorithm out-
puts x to within an additive factor δ. By setting ξ = ε

T , 
the FLRAS with accuracy parameter δ and confidence pa-
rameter ε runs in time T · poly(n, δ−1, log ξ−1, log R(n)) =
poly(n, δ−1, logε−1) and uses O (log R(n) + log n + log δ−1 +
log log ξ−1) = O (log n + log δ−1 + log logε−1 + log log R(n))

space, as desired. �
As explained before, [1] shows that the function com-

puting the SVD of a real matrix A that has a polynomially 
bounded norm and well-separated singular values, and the 
function inverting a well-conditioned matrix with a non-
negligible norm both have an FLQAS, and both compute 
a polynomially bounded function. Thus, either prBQL �=
prBPL, or else there must exist an FLRAS for both prob-
lems, implying that approximately inverting a matrix is 
essentially in prBPL.
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