
Quantum Bit Escrow 

Dorit Aharonov * 
University of California 

Berkeley, CA 94720 
doria @ cs.berkeley.edu 

Amnon Ta-Shma t 
University of California 

Berkeley, CA 94720 
amnon @ cs.berkeley.edu 

Andrew C. Yao 
Princeton University 
Princeton, NJ 08544 

yao@cs.princeton.edu 

Umesh V. Vazirani * 
University of California 

Berkeley, CA 94720 
vazirani @ cs. berkeley.ed u 

ABSTRACT 

Uncondit ionally secure bit commi tmen t  and coin flipping are 
known to be impossible in the classical world. Bit commit-  
ment  is known to be impossible also in the quan tum world. 
We introduce a related new primitive - quantum bit escrow. 
In this primitive Alice commits  to a bit b to Bob. The  com- 
mi tment  is bindingin the  sense tha t  if Alice is asked to reveal 
the bit, Alice can not bias her commi tmen t  wi thout  having 
a good probability of being detected cheating. The  commit-  
ment  is sealing in the sense tha t  if Bob learns information 
about  the encoded bit, then if later on he is asked to prove 
he was playing honestly, he is detected  cheating with a good 
probability. Rigorously proving the correctness of quan tum 
cryptographic protocols has proved to be a difficult task. We 
develop techniques to prove quant i ta t ive  s ta tements  about  
the binding and sealing propert ies of the quan tum bit escrow 
protocol. 

A related primitive we construct  is a quan tum biased coin 
flipping protocol  where no player can control the game, i.e., 
even an all-powerful cheating player must  lose with some 
constant  probability, which stands in sharp contrast  to the 
classical world where such protocols are impossible. 
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1. INTRODUCTION 
We star t  with an informal definition of a (very) weak variant 
of bit commitment .  In this variant there is first a commit-  
ment  stage in which Alice commits  a bit b to Bob. Later  
on there is a reveal stage in which Alice reveals the bit and 
Bob proves he played honestly. The  protocol  should be bind- 
ing in the sense that  if Alice changes her mind at revealing 
t ime then Bob has a good probabili ty of catching her cheat- 
ing, and sealing in the sense tha t  if Bob learns information 
about  the commi t t ed  bit then Alice has a good probabili ty 
of catching him cheating. Thus,  the fundamenta l  (and only) 
difference between this pr imit ive and bit commi tmen t  is that  
in bit commi tmen t  Bob can not learn from the encoding any 
information about  b, while in the weak primit ive Bob can 
learn a lot of information about  the encoded bit, but  if he 
does so Alice catches him cheating with a good probability. 

DEFINITION 1. (Weak bit commitment) A weak bit com- 
mitment protocol is a quantum communication protocol be- 
tween Alice and Bob which consists of two stages, the de- 
positing stage and the revealing stage, and a final classical 
declaration stage at which both Alice and Bob each declare 
"accept" or "reject". The following requirements should 
hold. 

• If  both Alice and Bob are honest, then at depositing 
stage Alice decides on a bit, b. She then communicates 
with Bob, where Alice's protocol depends on b. At  re- 
vealing stage Alice and Bob communicate, and during 
this stage Alice reveals to Bob the deposited bit b. Both 
Alice and Bob accept. 

• (Binding) I f  Alice tries to change her mind about the 
value of b, then there is non zero probability that an 
honest Bob would reject. 

• (Sealing) If  Bob attempts to learn information about 
the deposited bit b, then there is non zero probability 
that an honest Alice would reject. 

Later  on, we will give more formal  definitions of "Alice 
changing her mind" and "Bob learning informat ion" ,  and 
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Figure 1: Cb,~ 

we will quantify the degree to which a protocol is binding 
or sealing. 
Now, consider the following protocol: 

PROTOCOL 1. (Bit  Escrow) For an angle ce E [ - r ,  r] de- 
fine ¢~ = cos(c~)lO ) + s in(~) l l  ). Let, 

¢-0 b = 0 ,  z = 0  
Cb,, = ¢0 b = 0 ,  z = l  

¢9_0  b = l , x = 0  
¢9+0 b = l , z =  1 

for some fixed angle 0 <_ ~ , ~ say, 0 = -~. ~ See Figure 1. 
To deposit bit b, Alice picks a random x E {0, 1}, and sends 
Cb,x to Bob. Later on, one of the following two challenges 
is issued: 

* Either Alice is asked to reveal the deposited bit, and 
then Alice sends the classical bits b and z to Bob 1 
Bob measures ¢ according to the basis {¢0,x, ¢1,x} and 
verifies that the result of the measurement  is ¢b,x. 

• Or Bob is asked to return the deposited qubit, he 
returns a qubit q, and Alice measures it in the 
{¢0,~, ¢1,x} basis and verifies that it is Cb,~. 

We rigorously define and prove: 

THEOREM 1. Protocol 1 has the following properties: 

• The deposited qubit does not reveal, in an information 
theoretic sense, all the information about the deposited 
bit b. 

• (Binding) When Bob asks Alice to reveal the classical 
bit b that she deposited, if  Alice influences the value of 
b with advantage e then she is detected cheating with 
probability ~(c 2). 

• (Sealing) When Alice challenges Bob to return the de- 
posited qubit, then if  Bob can predict b with advantage 
e then he is detected cheating with probability ~(e2).  

Protocol 1 and Theorem 1 do not achieve the goal set in 
definition 1 of weak bit commitment.  Definition 1 asks for 
a protocol that  is both binding and sealing, i.e., a commit- 
ment s.t. if either player cheats he is detected cheating with 
a good probability. Protocol 1 and Theorem 1 only give a 
commitment that  is either binding (if Alice has to reveal) or 

1This means that  when Bob gets the qubit qb that  is sup- 
posed to carry a classical value for b, Bob measures qb first 
in the {10), [1)} basis. We carry this convention throughout 
the paper. 

sealing (if Bob has to return the qubit), but not simultane- 
ously both. We therefore catll this protocol a bit escrow pro- 
tocol. The question of achieving simultaneous binding and 
sealing i.e. a weak bit commitment protocol, is left open. 
This question was addressed in [3], who independently de- 
fined the binding and sealing properties, and we discuss it 
in section 1.2. 
We describe soon how to use the first two properties in The- 
orem 1 to get a biased coin flipping protocol with a constant 
bias. 

1.1 Quantum Coin flipping 
Alice and Bob are going through a divorce. They want to 
decide by at coin flip over the phone who is going to keep the 
car. The problem is that  they do not trust  each other any 
more. 

DEFINITION 2. (Classical coin flipping) [2] A coin flip- 
ping protocol with 6 bias is one where Alice and Bob com- 
municate and finally decide on a value c E {0, 1} s.t. i f  at 
least one of the players is honest  then for  any strategy of the 

1 6].  dishonest player Prob(c = O) E [½ - 6, ~ + 

Classical coin flipping can be implemented either by a 
trusted party or by assuming players with limited compu- 
tattional power and some cryptographic assumptions. How- 
ever, if the players have unlimited computat ional  power then 
no coin flipping protocol is possible in a classical world. This 
is because any protocol represents a two player game, atnd 
therefore game theory tells us that  there is a player with an 
always winning strategy. 
'By contrast, in the quantum setting coin flipping (without 
computational  assumptions) is not a priori ruled out. This is 
because any a t tempt  by a player to measure extra informa- 
tion by deviating from the protocol can disturb the quantum 
state, and therefore be detected by the other player. This 
leads Lo and Chau[5] and later Matyers et. al.[7] to consider 
quantum coin flipping. There are several ways to define 
quantum coin flipping when cheaters can be detected. We 
define: 

DEFINITION 3. (quantum coin f l ipping) A quantum coin 
fl ipping protocol with bias 6 is one where Alice and Bob com- 
municate and finally each decides on a value c E {0, 1, err}.  
Let CA (CB) denote Alice's (Bob's) result. We require: 

• I f  both players are honest  then CA always equals CB, 
Prob(cA = err) = O, and 0 and 1 have equal probabil- 
ity: Prob(cA O) Prob(cA 1 ) -  1 

• I f  one of the players is honest  and the other is not, 
then for any strategy of the dishonest player, the honest  
player's result c satisfies for  any b E {0, 1}: 

1 
Prob(c = b) < ~ + 6 

Lo and Chau [5] showed that  there is no quantum coin flip- 
ping protocol with 0 bias, under a certain restriction ("ideal 
coin flipping".) Mayers et al [7] generalized their proof to 
the general 0 bias case. Lo and Chau leave open the ques- 
tion whether non-exact protocols exist. Mayers et al [7] 
suggest at quantum coin flipping protocol that  is based on a 
biased-coin protocol that  is repeated many times. Mayers 
et al prove thatt it works well against some strong, nattural 
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attacks. However, no general proof is given or claimed for 
the coin-flipping protocol or the biased-coin sub-protocol. 
We give a simple protocol for quantum biased coin flipping, 
with constant bias. It is a modification of protocol 1: 

PROTOCOL 2. (A biased coin f l ipping protocol) 

• Alice picks b, x En  {0, 1} and sends Bob ¢b,~. We set 
" T r  

• Bob chooses b' CR {0, 1} and sends it to Alice. 

• Alice sends Bob b and x. Bob checks against the qubit 
she sent in the f irst  step. The result of the game is 
r = err if Alice is caught cheating and r = b G  b' 
otherwise. 

Based on the properties of protocol 1 we can prove that no 
player can fully control the game: 

THEOREM 2. Protocol 2 has 6 < 0.42 bias. 

i.e., no player can force his result with probability greater 
than 0.92. We note that while our protocol is resilient 
against all powerful malicious quantum players, it requires 
only simple single qubit operations from the honest player. 
An intriguing question is whether quantum coin flipping pro- 
tocols are possible for arbitrarily low biases. 

1.2 Weak Bit Commitment?  
Hardy and Kent [3] (see Section 1.3) noticed that Protocol 1 
can be used to give a weak bit commitment .protocol if Alice 
and Bob can access a random independent coin flip. This 
is done as follows: at revealing time Alice first reveals the 
bit b, and then they receive a random independent coin flip. 
If the coin is 0, Bob is challenged to convince Alice that he 
hasn't  been cheating, and if the coin flip turns out to be 1, 
then Alice is challenged. This is still correct if the coin flip 
is biased, as long as both probabilities for 0 and for 1 are 
constant. 
Since we already have a biased coin flipping protocol, we 
might consider using this biased coin flipping protocol com- 
bined with the bit escrow protocol to give a weak bit com- 
mitment protocol. Consider the following protocol (see Fig- 
ure 2): 

PROTOCOL 3. To deposit bit b, Alice picks a random 
x E {0, 1}, and sends ¢ : eb,x to Bob. To reveal the bit, 
Alice sends b to Bob. Then a biased-coin flipping protocol 
(Protocol 2) is played. 

• I f  Alice loses she is asked to reveal x and Bob measures 
¢ according to the basis {no,x, ¢1,x} and verifies that 
the result of the measurement  is nb,x. 

• I f  Bob loses he is asked to return the deposited qubit 
q, and Alice measures it in the {¢o,:~, ¢1,:~} basis and 
verifies that it is eb,x. 

It is left as an open question whether this protocol, or per- 
haps a protocol which uses a different coin flipping proce- 
dure, is actually a weak bit commitment protocol. The main 
difficulty in proving or disproving such a result is the issue of 
independence between the coin flipping protocol and the bit 
escrow protocol. In other words, one has to prove that the 
cheater cannot use entanglement to correlate the events of 

Alice Bob 

b,x 

q=phi_b,x 

c,x_O 

phi_in,x_O L 
w 

¢' 

c,x_O 

c=c'? 

c ~  "/ "X~eq c' 

x q 

Verify q=phi_b,x Verify q=phi_b,x 

Inactive 

Figure 2: Protocol 3 

being detected cheating in the bit-escrow protocol and win- 
ning the biased coin flipping protocol, in such a way that 
the cheater is never challenged when he (or she) has posi- 
tive probability of being detected. 
It is our hope that our techniques could be extended to 
give weak bit commitment with f~(e c) binding 0:nd sealing 
for some constant c. Our results also show that Protocol 3 
cannot be more than ~2(e 2) sealing or binding. It might be 
interesting to find a protocol that does better, or prove that 
such a protocol does not exist. It seems that a weak bit 
commitment protocol with better than quadratic security 
parameters can be used repeatedly to give a secure coin 
flipping protocol with unbounded bias. 

1.3 Related Work 
Some of the work presented here was independently done by 
Hardy and Kent [3]. They independently defined the bind- 
ing and sealing properties and the weak bit commitment 
primitive (giving it different names). The protocol they an- 
alyze is similar in structure to protocol 3. Hardy and Kent's 
result asserts that a protocol similar to Protocol 3 is simul- 
taneously sealing and binding. I.e., if Alice (Bob) uses a 
strategy that gives her (him) ~ advantage, then Alice (Bob) 
is detected cheating with some probability which is strictly 
greater than 0 (they do not analyze the dependence of the 
detection probability on e). However, no proof is given re- 
garding the security against a cheater who tries to correlate 
the two parts of the protocol to his (or her) advantage. 

2. PRELIMINARIES 
T h e  mode l .  Let {e l , . . .  ,e2~} be an orthonormal basis for 
C n, and let [i) = l i l , . . .  ,i,~) be the vector ei. A pure state 
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over n qubits  is a vector v C I1J e" of norm 1. Any pure 
state Iv) can be expressed as Iv) = 2+aili), with ~ i l a i l  e = 1. 
A mixed s ta te  is a classical distr ibution over pure states, 
{p i ,¢ i} ,  where 0 < p l  < 1, Eipl = 1 and ¢i is a pure state, 
and the in terpreta t ion we give it is tha t  the system is with 
probability pi in the pure s ta te  ¢i. A quan tum system is, 
in general, in a mixed state.  The  system Alice builds in 
the first stage of Protocol  2 is in a mixed s ta te  that  is with 

1 in some pure s ta te  ¢b,~. probabifity 7 
A quan tum system can undergo two basic operations: uni- 
tary evolution and measurement .  

U n i t a r , y  e v o l u t i o n  : If a unitary t ransformat ion U : 
C e ~-* C e~ is applied to a pure stkte ¢, then the 
new s ta te  of the system is the pure s ta te  U¢.  If U is 
applied to the mixture  {pi, ¢i} then the new state  of 
the system is the mixture  {pi, U¢i} .  The  interpreta-  
tion we give it is tha t  with probabili ty pi the system 
was in the pure s ta te  ¢i hence it is now in the pure 
state U¢i.  

O r t h o g o n a l  M e a s u r e m e n t s  : An orthogonal  measure- 
ment  is a decomposi t ion of the system into orthogo- 
nal subspaces. More formally, suppose the system is 
in a super position ¢ E C e~. Suppose 7- /1 , . . . , :Hk 
are orthogonal  subspaces, and C 2~ = 7-ll (9 . . .  G :Hk. 
A measurement  of ¢ according to the decomposi t ion 
:H1, . . .  ,7-/k, will get result i (or :Hi) with proba- 
bility qi = lIIT~,l¢)l e where I17~, is the project ion 
on subspace :Hi, and then the s ta te  will collapse to 
~(II7~,1¢).  In other  words, ¢ falls into the subspace 

:Hi with probabili ty which is the length of the projec- 
tion squared, and the new vector is the normalized 
projected vector.  An or thogonal  measurement  can 
be represented using an Hermit ian mat r ix  M whose 
eigenspaces are the subspaces :Hi. A measurement  of 
a mixture  is the mixture  of the measurements  of the 
pure states.  

2 n 
Given a system do on C , one can use an ancilla, say 
10,. . .  ,0) E <1~ e , apply a uni tary t ransformat ion U : 
C 2~ ® C  em ~ C e~ ® C  era, and then an or thogonal  mea- 
surement  on ¢?"  @ C e'~. It  turns  out  tha t  this is the most  
general measurement  possible. There  are several equivalent 
ways to formulate  this so called 'generalized measurement ' ,  
and we refer the interested reader to [8]. 

T h e  D e n s i t y  M a t r i x .  The  density mat r ix  of a pure s ta te  
1¢) is the mat r ix  1¢)(¢[, where (¢[ = ( (¢) t ) .  is the conjugate  
transpose of ¢. For example,  the density mat r ix  of ¢0,0 is 

( cose(0) - cos(0) sin(0) ) 
10-0)(¢-01 = - cos(0) sin(0) sine(0) 

The  density mat r ix  of a mixed s ta te  {pi, ¢i} is ~ipilq~i)(q~il. 
All density matr ices  are Hermit ian,  positive semi-definite 
and have trace 1. If a uni tary mat r ix  U operates  on the 
system, it t ransforms the density mat r ix  p to UpU t. A mea- 
surement  M operat ing on a system whose density mat r ix  is 
p results in an expected outcome T r a c e ( M p ) .  

D i s t i n g u i s h i n g  B e t w e e n  D e n s i t y  M a t r i c e s .  Given a 
quantum system p and a generalized measurement  O on 
it, let pO denote the classical distr ibution on the possible 

results tha t  we get by measuring p according to O. i.e., it is 
some classical distr ibution p l , . . .  ,Pk where we get result i 
with probabil i ty pi. Given two different mixed states,  we can 
ask how well one can distinguish between the two mixtures.  
We need a measure for the distance between two classical 
dis tr ibut ions and we choose the 11 norm: 

DEFINITION 4. Let pl , . . . , pk and qa , • •. , qk be two prob- 
ability distributions o v e r { I , . . .  ,k}.  Then l p - q l l  = E i l P l -  
qil. 

A fundamenta l  theorem about  distinguishing density matr i-  
ces[l] tells us: 

THEOREM 3. [1] Let  pl, p2 be two density matrices on the 
same space :H. Then for  any generalized measurement  0 

IP? - P?la <- Trace( , /3- i -2)  

where A = pl - pe. Furthermore, the bound is tight, and 
the orthogonal measurement  0 that projects a state on the 
eigenvectors of pa - P2 achieves this bound. 

Theorem 3 shows tha t  the density mat r ix  captures  all the 
accessible informat ion tha t  a quan tum state  contains. If 
two different mixtures  have the same density mat r ix  (which 
is quite possible) then physically they are two different sys- 
tems, but  practically (and from a computa t iona l  point of 
view) they are indist inguishable.  
The  quant i ty  Trace(v / -A-~)  is of independent  interest .  If 

we define [IAIIt = T r a c e ( ~ )  then II'llt defines a norm, 
and has some addit ional  propert ies  such as ] IA® B]lt = 
IIA]it .  IIBl[t, Ildllt = 1 for any density mat r ix  A and 
IIABII , , I IBAIIt  <_ IIAIIt .  IIBIl,. If  ¢a ,¢2  are two pure 
states,  and pi is the reduced density ma t r ix  of ¢i,  then 
liP0 - P a l I t  = 2V/1 - I ( ¢ 1 1 ¢ ~ ) ? -  See [1] for more details. 

L o c a l i t y .  We now turn  to the local view of a subsystem. 
Suppose we are in a mixed s ta te  p over k + m qubits,  where 
Alice holds the first k qubits  A and Bob holds the last m 
qubits  B.  Assume tha t  Alice applies a generalized measure- 
ment  O on her qubits  A. This  induces a new density mat r ix  
pO on B. E.g., if Alice and Bob were in the super position 
¢ = -~(100) + I l l ) )  over two qubits  and Alice measured the 

second qubit  according to the basis {[0), I1)}, then Bob is 
1 in the super posit ion I0) and with prob- with probabil i ty 

1 in I1), hence pB ° 0 = 1 . A fundamenta l  ability ~ ~- 

fact f rom physics, which can also be proven rigorously, tells 
us tha t  in fact p~ does not  depend on O, but  only on the 
original mat r ix  p. We thus denote  it by PlB, and call it the  
density mat r ix  p reduced onto the subsystem B. Alterna-  
tively, we say tha t  the rest of the system is traced out. The  
physical in terpre ta t ion  of the above result is tha t  a player is 
guaranteed locality, i.e., a player Bob who holds a subsys- 
tem B knows tha t  the results he gets from measurements  he 
applies on B do not depend on the way the system outside 
B evolves. It is also some kind of commi tment .  If Alice 
sends Bob k qubits  tha t  have reduced density mat r ix  PB, 
then whatever  Alice la ter  does can not change this reduced 
density matr ix.  

P u r i f i c a t i o n .  A density mat r ix  on a Hilbert  space A can 
always be viewed as a reduced density ma t r ix  of a pure s ta te  
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on a larger Hilbert  space, a process which is called "purifi- 
cation".  A pure s ta te  I¢)A,B is a purification of the density 
matr ix  PA if the reduced density mat r ix  of I¢)(¢IA,B to the 
Hilbert space A is p. The  most  s traight  forward way to 
purify a density mat r ix  p = ~-~i wi l¢ i ) (¢ i l  is by the s ta te  
I¢) = E~ v'-~li)  ® I¢,). 

F i d e l i t y .  
The  fidelity is a way to measure  distances between density 
matrices, which is an al ternat ive to the trace metric.  Given 
two density matrices p0, pl on the same Hilbert  space A the 
fidelity is defined [4] to be: 

f(Po, Pl) = sup I(¢o1¢~)1 ~ (1) 

where the supremum is taken over all purifications 1¢0) of p0 
and I¢1) of pl to the same dimensional Hilbert  space. We 
note here a few impor tan t  propert ies which can easily be 
proven: 

1. 0 ~ f (Po ,p l )  ~ 1 

2. f(Po, P l ) = l C = = ~ p o  = P l  

3. For p0 which is a pure state,  i.e. p0 ---- 1¢0)(¢0h we 
have 

f(po,Pl)= (¢olP~1¢0). 

Note that  the fidelity increases as the distance between two 
density matrices decreases. It is also not  too difficult to see 
that  the supremum is always achieved, i.e. we can replace 
the supremum by a maxirhum; See [4] for more details. 

E n t a n g l e m e n t .  Suppose Alice holds a register A, Bob 
holds B, and the system is in a pure s ta te  CAB. If we look 
at Bob's system alone then we might  see a mixed state,  and 
as we said before, Alice can not change the reduced density 
mat r ix  of Bob by local operat ions on her side. On the other  
hand Alice might gain different aspects of knowledge on the 
actual result that  Bob gets. 

EXAMPLE 1. CAB = 2 (100 )+111 ) ) .  l fA l i ce  measures in 

the {10), 11)} basis, then Bob's system is with probability half 
in the state 10), and with probability half in the state 11>, and 
the register A reflects the result Bob gets, i.e., Alice knows 
whether Bob gets a zero or a one. Now, CAB can also be rep- 

1 resented as ~(1+, +) + I- , -))  where [q-) - :  1 7~(10) + ]1)) 
and I - )  = ~(10> - I1)). Alice can measure the register A 
in the {]q-}, I - ) }  basis. Now Bob's system is with probabil- 
ity ½ in the state I+), and with probability half in the state 
I - ) ,  and the register A reflects the result Bob gets, i.e., Al- 
ice knows whether Bob gets I+) or  I - ) .  Notice that Bob's 
reduced density matrix is the same in both cases. 

An impor tan t  Theorem by Mayers [6] and independent ly  Lo 
and Chau [5] states: 

THEOREM 4. Suppose the reduced density matrix of B is 
the same in CAB and CAB. Then Alice can move from CAB 
to CAB by applying a local transformation on her side. 

I.e., even though Al i cecan  not change Bob's  reduced density 
matrix,  she can determine how to "open" the mixture,  and 
do so in a way that  gives her full knowledge of Bob's  result. 

3. THE BINDING PROPERTY 
In Protocol  1 Alice sends a qubi t  to Bob (we call it a "de- 
posit" step) and la ter  on she tells Bob how to "open" the 
qubit  ( the "reveal" step) which also determines  the value 
tha t  is supposed to be in the qubit.  Such a protocol  is 
worthless unless the deposit  step is "binding" Alice to a 
pre-determined value. We first define the binding proper ty  
in a general  way. We then 
is. Suppose we have a two 

D e p o s i t  : Alice prepares 
quan tum registers A 
register B to Bob. 

analyze how binding Protocol  1 
step protocol:  

a super-posit ion CAB with two 
and B.  Alice sends the second 

R e v e a l  : Alice and Bob communicate .  Bob follows the 
protocol  and Alice is arbitrary. If Alice wants to c r e a t e  
a bias towards 0 she uses one strategy, and if she wants 
a bias towards 1 she uses a different strategy. Bob 
decides on a result rB E {0, 1, err}.  

Let us denote by p0 the probabili ty tha t  Alice claims the re- 
sult is 0 in the zero strategy, by pl the probabili ty that  Alice 
claims the result is 1 in the zero strategy, and by p~,~ the 
probabili ty that  Bob decides the answer is rB : err when 
Alice uses the zero strategy. We similarly define qo, ql, q~r 
for the one strategy. 

DEFINITION 5. ((e, ~/) binding) A protocol is (e, 7) bind- 
ing, if whenever Bob is honest, for  any strategy Alice uses, 
i] p . . . .  q ~  <_ e then IPo - qo l, lPl - ql] ~ 7- 

3.1 Protocol 1 is quadratically binding 

2___~__ ~ binding. THEOREM 5. Protocol 1 is (e, 7 = ¢o~(20) J 

PaOOF. (of Theorem 5). At  deposit  t ime Alice sends Bob 
one qubit  B,  which might  be entangled with the qubits A 
tha t  Alice holds. Let us denote the reduced density matr ix  
of B by p. At  revealing time, Alice may choose whether  
she wants to bias the result towards 0, in which case she 
applies the generalized measurement  M0, or towards 1 in 
which case she applies M1. The  measurements  3//o and M1 
do not  change the reduced density mat r ix  p of Bob, but  
ra ther  give different ways to realize p as a mixture  of pure- 
states,  and give Alice information about  the value that  Bob 
actually gets to see in this mixture.  
Now, we even go fur ther  and give Alice complete  freedom to 
choose the way she realizes the reduced density mat r ix  p of 
Bob as a mixture ,  and we give her the knowledge of Bob's  
value for free. Let us say tha t  when Alice applies M0, the 
reduced density mat r ix  p is realized as the mixture  {pi, ¢i}, 
and when Alice applies M1 the reduced density mat r ix  p is 
realized as the mixture  {p~, ¢~}. 
Now, let us focus on the zero strategy. Say Alice realizes p 
as {pi, ¢i}.  When the i ' t h  event happens,  Alice's s t rategy 
tells her to send some two qubits  qb, qx to Bob, tha t  are 
supposed to hold classical 0, 1 values for b and x. Bob then 
measures qb and q~ in the {10),[1)} basis. Now, if one of 
qb, q~ is not  a classical bit, then Alice can measure it herself 
in the {10), I1)} basis, and get a mixture  over classical bits. 
Fur thermore ,  we can push all the probabilist ic decisions into 
the mixture  {pi, ¢i}. Thus,  w.l.o.g, we can assume Alice's  
answers qb and qz are classical bits that  are determined by 
the event i. Let us denote  by ui the vector  ¢5i,x, where bi,xi  
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are Alice's answers when event i occurs. W.l.o.g we may 
assume u~ ~ {¢b,=}, otherwise we know Bob immediately 
rejects. 
The probabili ty Bob discovers that  Alice is cheating is then 
1 -[(¢i[u,>] e and the overall probabili ty Bob detects Alice 
is cheating is 

p ~ .  -- ~p , (1 - I (¢~ lu ,> l  =) 

Let us define the density matr ix  po = Z~p~luO(u~l. 

CLAIM 6. l i p -  poll, ~ 24p . . . .  

PROOF. II1¢d(¢~1- I~i>(u,lll* 
Therefore 

= 2x/1 - I ( ¢ ~ l u d P .  

l i p -  poll, = I1~,p~1¢,)(¢~1- ~p~lu~)(u~l I1, 
___ ~'~p~111¢0(¢~1-lu0(u~l I1, 
= 2 ~ p , ~ / 1 - I < ¢ H u d l  e 

Now, by Cauchy-Schwartz inequality, 

E ip i~ f l  - I ( ¢ H ~ d l  e 

and the claim follows. 

= s~x/~x/p~(1 - I < ¢ H ~ d l  =) 

<_ ~ X / S , p i ( 1  --I<¢,lu,>l =) 
= x/pert 

[] 

Similarly, if Alice tries to bias the result towards 1, B 
ends up in the mixture  {P~,¢I}, and when ¢~ occurs Al- 
ice sends b ' ,x '  to Bob that  correspond to a vector u~ E 
{¢b,=}. We define pl to be the reduced density matr ix  
Pl : Sip~lu~)(u~[. As before, l i p - p i l l *  < 2 qv"qT;7. Hence, 
l i p 0 -  p, ll, <_ 2( pv~T,- + q4~7;;~-). 
To conclude the proof, we establish the following claim: 

CLAIM 7. Let po and pl be density matrices correspond- 
ing to mixtures over {¢b,=}. Let po be the probability of 
¢0,0 or ¢o.1 in the first mixture, and pl = 1 -  po be 
the probability of ¢1,0 or ¢1,1. Similarly let qo and ql be 
the corresponding quantities .for the second mixture. Then 
Ilpo - P~II* >- 2.  Ipo - qol cos20.  

PROOF. We show that  we can distinguish the mixtures 
with probabili ty at least IPo - q0lcos 20 when we measure 
them according to the basis {10), I1)}. If we do the measure- 
ment  on a qubit  whose state is the reduced density matr ix  p0 
we get the [0) answer with probabili ty p0 cos 2 ( 0 ) + p l  sin e (0), 
while if we do the measurement  on a qubit  whose s tate  is the 
reduced density matr ix  pl we get the 10) answer with prob- 
ability q0 cose(0) + q~ sin e (0). The difference is tPo cose(0) + 
pa sine(P) - (qo cose(0) + ql sine(P))[ = Ipo - qol(cose(O) - 
sin e (0)), where we used pl - ql = (1 - p o )  - (1 - qo) = qoE-po. 
Altogether we get I lpo - p~ II, >- 2. Ipo - qo I(cos e ( 0 ) - s i n  ~ (8)) 
as desired. []  

Pu t t ing  it together: 

2 'cos(20) ' lP0-q01 < I b l - P l l l *  < 2 (  PVT/7;~--+ qV~;,--) < 4 v q  

e f t  I.e., [P0 - q o [  ~ ¢o~(e0)" 

3 .2  A Q u a d r a t i c  S t r a t e g y  f o r  A l i c e  
We now show that  Alice has a quadrat ic  strategy for Pro- 
tocol 1, and thus Theorem 5 is essentially tight. In fact, 
we show the quadrat ic  bound for a more general family of 
protocols. Let po, pl be two density matrices of the same 
dimension, p0 can be realized as the mixture  {p0, [a01} ' and 
pl as {p!, ]a~)}. To encode b, honest Alice picks [ai) with 
probabili ty p~ and sends it to Bob. At revealing t ime Al- 
ice sends b and i to Bob, and Bob tests whether  Alice is 
cheating by projecting his state on ]ab). 

THEOREM 8. Let f be the fidelity I(Po,P~). For any 
0 < a _< r / 4  there exists a strategy for Alice with ad- 
vantage v/- fs in(2a)/2 and probability o.f detection at most 
(i-f)~(~), 

2 

On first reading of the next  proof the reader might want to 
check the proof in the simpler case where p0 and pl represent 
pure states, i.e., pb = ICb}(~bbl. 

PROOF. We first represent the s trategy of a honest Al- 
ice in q u a n t u m  language. Consider two maximally paral- 
lel purifications [¢o) and [¢1) of p0 and pl,  where p0 and 
pl are density matrices of the register B, and the purifica- 
tions are states on a larger Hilbert space A Q B. By [4], 
[(¢01¢1)l 2 ---- f(po, pl). At preparat ion time, Alice prepares 
the state 

I # ) -  v~2 (10, ¢0) +11, ¢1)) 

on A Q B  and one extra  qubit  C. Alice then sends the-register 
B to Bob. At revealing time, Alice measures the qubit  C in 
the 10), I1) basis, to get a bit b. The state of registers A, B 
is now [¢b/- Alice then applies a un i ta ry  t ransformat ion Ub 
on register A, which rotates her state ICb) to the s tate  

b ' b 

J 
This is possible by Theorem 4. After applying Ub, Alice 
measures register A in the computa t ional  basis and sends 
Bob the bit b and the outcome of the second measurement ,  
j .  This  s trategy is similar to the honest  strategy, except for 
tha t  Alice does not  know what bit and state is sent unti l  
revealing time. 
We can also assume w.l.o.g, tha t  the maximally parallel 
purifications satisfy tha t  (¢o[tbl} is real and positive. This 
can be assumed since otherwise we could mult iply l¢0) by an 
overall phase without  changing the reduced density matr ix  
and the absolute value of the inner  product .  
To cheat, Alice creates the encoding [fl)CAB and sends regis- 
ter B to Bob. Alice's one strategy is also as described above. 
The  zero strategy, on the other hand,  is a slight modification 
of the honest strategy. At revealing time, Alice measures the 
control qubit  C in the {1¢~), I¢~)} basis, where 

I¢~) = clO>+sll>, (2) 
[¢~) = - s [ O ) + c [ 1 ) ,  

and s = s in(a) ,  c ---- cos(a).  If the outcome is a projection on 
]Ca) Alice sends b = 0 and proceeds according to the b = 0 
honest  protocol, i.e. applies U0 to register A, measures in 
the computa t ional  basis and sends the result to Bob. If the 
outcome is a projection on [¢~), Alice proceeds according 

710 



to the b = 1 honest protocol. Let us now compute Alice's 
advantage and Alice's probabili ty of gett ing caught cheatingl 
We can express Ifl) as: 

1 
I~> - ~ ( c 1 ¢ ~ , ¢ 0 ) -  s1¢~,¢0)) + 

~(s l¢o,  ¢,) + c1¢~, ¢ 1 ) ) .  

Hence, the probabili ty Alice sends b = 0 in the zero strategy 
= ~-(c +,~+2cs(¢01¢~>)= ½0 +2c~vq). 

We conclude: 

CLAIM 9. Alice's  advantage is v~sin(2a) 2 

We now prove that  the detection probabili ty is at most 
(1 - f ) s  2. The state of A ® B  conditioned that  the first mea- 

~(c1¢o) + surement yields l¢~) can be wri t ten as 

s l¢ l ) )  where Pr(b = 0) is the probabili ty Alice sends b = 0 
in the zero strategy. The above state can be wri t ten as 

1 1 
,~(c  + vqs)l¢0) + VY-=-Tsl¢0 ~) 

x / P r ( b  O) 

The rest of the protocol involves Alice's rotat ion of the state 
by U0, then Alice's measurement  of the register A and Bob's  
measurement  of the register B. The entire process can be 
treated as a generalized measurement  on this state, where 
this measurement  is a projection onto one of two subspaces, 
the "cheating Alice" and the "Honest Alice" subspaces. We 
know that  [¢0) hes entirely in the honest Alice subspace, 
and thus the probability tha t  Alice is caught, conditioned 

1 1 rl  - f ) s  2 that  C was projected on ¢~, is at most ~ 

In the same way, when we condit ion on a projection on ¢~,  
1 1 C S Alice's state can be writ ten as ~ :7~(( - v ' - f  ) [ ¢ 1 ) -  

x/]YZ--fs[¢~)), which gives a probabili ty of detection which 
1 is at most ~ ½ ( 1  - f ) s  2. Adding the conditional prob- 

abilities together we get that  the detection probabili ty is at 
most (1-f)~2 []  

2 

4. T H E  S E A L I N G  P R O P E R T Y  

DEFINITION 6. ((c,p) sealing) A bit escrow protocol is 
(e, p) sealing, i f  whenever  Alice is honest  and deposits a bit b 
s.t. Prob(b = O) = 1 for  any strategy Bob uses and a value 5, 
c Bob learns, it holds that ei ther 

1 • PrbeR{o,1},p~otoco, (c = b) < ~ + e, or 

• Prben{o,1},wotoool (rA = err)  > p 

The probability is taken over b taken uni formly f rom {0, 1} 
and the protocol. 

We show here that  protocol 1 is quadratical ly sealing. This 
means that  whatever Bob does, he will always be detected 
cheating with probability which is at least the square of his 
advantage. Later, we show that  this is tight. 

4.1 P r o t o c o l  1 is Q u a d r a t i c a l l y  S e a l i n g  

THEOREM 10. Protocol 1 is (e 0 = (sin(20) )' P) sealing. 

PROOF. We first describe a general scenario. Alice is hon- 
est and sends Ieb,x)A to Bob. Bob has an aneilla 10)c. Bob 
applies some uni tary  t ransformat ion U acting on the regis- 
ters A and C. Let us denote 

[Olb,x) = U(leb,x,  O)AC) 

Bob then sends register A to Alice, and keeps register C to 
himself. We want to show that  if C contains much informa- 
tion about  b then Alice detects Bob cheating with a good 
probability. 
We can express c~b,~ as a superposition, 

I~,.> = Ieb,~,~,x> + I¢~,~,w~,~> (3) 

where we have used the basis Ieb,x), [e-b, ,) ,  for A. In this 
representation,  the probabili ty p Bob is caught cheating is: 

b~x 

which in part icular  implies tha t  II~;,x[[ < 2 v %  
We now want to express Bob's  advantage. Let p0 (pl)  be 
the reduced density matr ix  of the register B conditioned on 
the event that  b = 0 (b = 1). Then,  

pb = E Pr(x)(lwb,.>(wb,~[ + [w~,~>(w~,~I ) (5) 
x 

Bob's advantage is at most  the trace dis- 
tance between p0 and pa, and we want to ' 
bound it from above. Triangle inequality gives: 
l l P o -  p, llt < ½( lllwo,o)(wo,ol- lw~,,)(w~,~lllt + 
l l l ,vo, , )(~o, , l - i -~, ,o)(w~,oll l ,  + E~,= llw£,=)(~;,~lll, ). 
As the trace norm of two pure states a and b is 
2V/1 - J (a lb ) [  2, and using Equat ion 4, we get: 

lip0- p, ll, < x / l -  I(~0,0]Wl,~)l: + 
. /1  - I(~0,,1~,0>1 = + 2p 

We now claim; 

LEMMA 11. ](W0,0lwl,1)l , I (wo, l [wl ,o) l  ~ ] _ 
O(c,g~(20) + 4)p. 

Thus, altogether, liP0- P~II* -< O(etg(20)v~) which com- 
pletes the proof. []  

We now turn  to the proof of Lemma 11. 

PROOF. (of Lemma).  
We will prove that  all the unpr imed w vectors lie in one 
bunch of small width, using the uni tar i ty  of U. The unitar-  
ity of g implies that  (¢b,~leb',x') ---- (~b,xI~b',x'). We can 
express c%,~ as in Equat ion 3. We get: 

(¢b,xleb,,=,) = (¢b,xleb,,~,)(w~,xlW,x,)+ 

I 

Subst i tu t ing the values b , x , b ' , x '  for actual  values, and 
noticing that  [(W'b,x[w'b,x,)] < 4p, we in part icular  get the 
following equations: 
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<Wb,~lWb,~) =,p 1 (O) 

(wo,olG,o>+(~4,olw~,o> = o (7) 
! ! 

(wo,~lw~,~)+(~Oo,~l~,~) -- o (8) 

(w~,ol~o;,~> - <w;,ol~la> =,~,/~ c( 1 - -  (~ ,o lwl , ,> )  (9) 

(Wo,llG,o) + (~4,~ I~ ,o )  =,,,/~ s(1 - (wo,a Iwa,o)) (10) 

-(wo,olw;,~> - ( G , o l ~ l a >  - - , , , / ~  s (  1 - <~o,ol~la>) (11) 

(G,olwo,~) - (wo,olG,~)  = . , / ,  sC-(1 - (~o,olwo,1)) (12) 

where c = cos(20), s = sin(20) and we write x =q y if 
1 x - Yl < q. A part ial  result  can already be derived from 
what  we have so far. By equat ion 4, we note tha t  the length 
of the primed w vectors is at most  2v/~. Insert ing this to 
equations 10 and 11, we get tha t  I(w0,0lw~,l)l and similarly 
I(wo,alwl,o)l are close to 1 up to terms of order x/P" This  
is a weaker than the result which we want to achieve in 
l emma 11, which is closeness to 1 up to order p terms.  If 
we stop here, the closeness of the unpr imed w vectors up to 
order V'P implies that  Bob's  information is at most  of the 
order of 4v~ .  Note, however, tha t  so far all we have used is 
unitarity, and we have not used the part icular  propert ies  of 
the set of vectors we use in the protocol.  In the rest of the 
proof, we will use the symmet ry  in protocol  1 to improve on 
this part ial  result, and to show tha t  Bob 's  information is at 
most  of the order of v/~. Basically, the symmet ry  which we 
will use is the fact tha t  the vectors in the protocol  can be 
paired into or thogonal  vectors. 
We proceed as follows. The  idea is to express equat ions 9- 
12 as inequalit ies involving only the distances between two 
w vectors, IlWb,~ -- Wb',x'll and then to solve the set of the 
four inequalities to give an upper  bound on the pairwise 
distances. This  will imply a bound on the inner products,  
(wb,~lWb,,~,), by the following connection: 

CLAIM 12. 1- -Re((w<~lwb, ,~ , ) )  > II~'~-~"~'ll~ 
- -  2 

where Re(z )  denotes the real part  of the complex number  z. 

PROOF. I Iw~,~-  ~,,~,112 = (w<,~--wb, , ,~ , lwb,~--w<,~,)  <_ 
2 - 2Re((wb, , lww,~,) ) .  [] 

We denote: 

a = II~0,0--~0,~ll  
b = IIw0,0--~l ,~l l  
e = I lwo ,~ -~ ,011  

d = I1~1 ,0 -~ ,~11  

Let L H S  ( R H S )  be the sum of the left (right) hand side of 
the last four equations.  

s 2 CLAIM 13. R e ( R H S )  > ~ ( a  2 + d  z ) + ~ ( b  + c  2) 

PROOF. 

R e ( R H S )  = c ( 2 -  Re((wo,olwoa)) - Re((w~,olwl,a)))  

+ - ~ ( 2 -  Re((wo,olw~a))  - Re((woalw~,o)))  

and now we can apply claim 12. []  

Expressing the left hand side of the equat ions in terms of 
a, b, c and d might  look a bit more comphcated,  and this is 
where we invoke the symmetr ic  propert ies of the protocol, 
namely equations 7 and 8. 

CLAIM 14. R e ( L H S )  <_ 4 v ¥ ( a  + b + c + d) 

PROOF. We first look at the LHS of Equat ion 11 + Equa- 
tion 12. By adding (WO,llW~,l)+ (w;,llw1,1) = 0 (due 
to Equat ion 8) and by using the fact tha t  Re( (a l f l ) )  = 
Re( ( f l l a ) )  we get tha t  the LHS of these two equations con- 
t r ibutes  Re((w~,olWo,1 - w1,1) + Re((w~,l lw~,l  - To,o) + 
Re((wL1 Iw0,~ - ~0,0) < 2 v ~ ( c  + d) + 2V~b + 2 v % .  
Similarly, the LHS of Equat ion  9 + E q u a t i o n  10 
is Re((w'l,olWo,~ - w1,1) + Re((w~,~lWl,O - w~,~) + 
Re((w~alwx,o - woa) <_ 2v/p(a + b + d + c). 
Altogether ,  R e ( L H S )  < 4x/~(a + b + c + d). []  

Combining Claims 14 and 13 with our knowledge tha t  
R e ( R H S )  < R e ( L H S )  + s~p + ~ we get: 

- -  8 a 

+ d + + c < 

4 v ~ ( a  + b + c + d) + 8c_._pp + Ss_._._pp 
8 e 

We want to show tha t  a, b, c, d are all of the order of x/~" 
Define A = a + b + c + d. For 0 < 0 < 5, ctg(20) >_ tg(20). 
Since all te rms in the left hand side are positive, we have for 
each of a, b, e, d an upper  bound in te rms  of A: 

8 A V ~  (~)~) 
d ,  b ~, d ,  d ~ _< s/---G- + 16p(1 + 

Thus,  A = a  + b + c  + d  < 4~/sa--~Pc + ~ .  

Solving the quadra t ic  equat ion 

A 2 2rV~CA 28p < 0 
S S 2 - -  

for A we get 

Finally, 

A G 1 3 2 - v / p .  ctg(2a) 

I(wo,olwa,a)l ~ IR~((wo,olwl ,1)) l  

Ilwo,oll ~ + IIw1,111 ~ - b ~ 
2 

2 - b 2 - 8p 
> 
- 2 

>_ 1 -- (21Sctg2(20) + 4 ) p  

where the third inequali ty is t rue due to equat ion 6. Simi- 
larly, we have the same lower bound for I(w0,11w~,0)l, which 
implies l emma 11. 

Thus,  our bit escrow protocol  gives quadra t ic  sealing. 

REMARK 1. Protocol 1 is sealing even i f  we modify it a 
little bit, as follows: at revealing t ime Alice f irs t  reveals b 
and then Bob returns the qubit q. In  other words, i f  Bob has 
learned e in format ion about b after the deposit stage, then 
even i f  later on he gets to know b, he cannot  avoid being 
detected with probability~2(e2). To see this, we use linearity. 
I f  Bob has a strategy which gives h im detection probability p 
in the modified protocol, then w.l.o.g, his strategy is to apply 
the ident i ty  i f  b = 0 and some uni tary  operation U if  b = 1. 
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However, since the b = 1, x = 0 and b = 1, x = 1 cases are 
linear combinations of the b = O,x = 0 and b = O,x = 1 
cases, one can show that if  Bob 's probability for  detection is 
p in the b = 0 case, then it is a lsoO(p)  in the b = 1 case, 
and therefore Bob does not  have to apply U in the f irst  place. 
This means that if  he has a cheating strategy for  the modified 
protocol, then he also has a cheating strategy with about the 
same parameters for protocol 1, and so by Theorem 10 the 
modified protocol is also quadratically secure. 

REMARK 2. One might suspect that this quadratic gap 
will always be the case for  any reasonable set of vectors for  
Alice. This is not correct. I f  Alice only uses ¢o,1 and ¢1,o, 
then Bob has a strategy which gives him 4v/" fi advantage. We 
will not elaborate on this in this paper. 

4.2 A Quadratic Strategy for Bob 

THEOREM 15. Let po, pl be two density matrices of the 
same dimension, such that 110o - o ~ l l ,  = t .  Consider the 
following protocol. Alice tosses a random bit b. She chooses 
a pure state from the mixture Pb, and sends it to Bob. Then 
Bob returns to Alice the state, and Alice projects it on the 
original state to test whether Bob has manipulated it. We 
claim that for any 1 >_ p > O, there is a strategy for  Bob such 
that he learns b with advantage tv/-fi, and his probability of 
detection is at most ½(1 - l~/Y-:-~- p), which is O(p) for  small 
p. 

proof.- Alice prepares an encoding eb of b • {0, 1} in register 
B, and sends register B to Bob. Let pb be the reduced den- 
sity matr ix  of eb to register B. We denote t = 1100 - o ~ l l t .  

By Theorem 3 we know that  if Bob is interested in learn- 
ing information about  b, and is not  concerned with being 
detected cheating, the best he can do is a measurement  
according to the eigenvalue basis of P0 - Pl- Given, any 
0 < p < 1 we modify this strategy to a strategy where the 
detection probabili ty is at most p, and yet, Bob gets much 
information. 
Let us consider more precisely Bob's  best strategy for 
learning b if he is not  concerned with b e i n g  caught. Let 
{ e l , . . .  ,eK} be the eigenvector basis of p0 - 01. Let V + 
( V - )  be the set of eigenvectors e with non-negative (neg- 
ative) eigenvalues. The measurement  M is defined by the 
Hermitian matr ix  for which V + is an eigenspace of eigen- 
value 0 and V -  is an eigenspace of eigenvalue 1. By Theo- 
rem 3 

t (13) ITrace(poM) - Trace(pl  M)l  = 

To apply a weak form of the measurement  M,  Bob takes a 
one qubit  ancilla C. He applies a uni tary  t ransformat ion U 
on the received message and the ancilla, as follows: 

Ule, O) = { [e,0) I f e • V  + 
l e )®[v)  I f e • V -  

where Iv) = lv/i--z~- pl0 ) + v '~ l l )  and U is completed to a uni- 
tary transformation.  After applying U Bob returns  register 
B to Alice, and keeps the ancilla C for himself. Notice that  
the special case p = 1 is equivalent to the measurement  M.  

LEMMA 16. [[Upolc - UmlcII, = t v %  

PROOF. We will show 

C L A I M  17.  

Upolc = Trace(poi)lO)(O I + ( 1 -  Trace(poM))lv)<vl) 
UplIc  = Trace(plM)lO)(O I + ( 1 -  T r a c e ( p l i ) ) l v ) ( v l )  

Thus,  Upolc - Upl Ic  = (Trace(poM)  - 
T race (p lM) ) ( ]O) (O[ -  [v)(v[) = -4- ~ ( [ 0 ) ( 0 [ -  [v)(v[), 
where the last equality is due to Equat ion 13. Since, 
1tl0)(01- Iv)(vlllt ---- 2X/1 - (01v)l = ---- 2 v ~  we get 
IIU001c - U m l c l l ,  = t v ~  as desired. []  

We now prove Claim 17. 

PROOF. (of Claim 17). We express po = ~-~.j wj[c~j)(crjl, 
where c U is a pure s tate .We further express each c U in the 
e igenbasis  { ei }: 

S-" a + le + 
i+ i -  

Applying U, this state is taken to: 

ul~j ,o)  = }--~a;le~+)10)+}--~a~le?)lv) 
i+  i -  

The reduced density matr ix  to the register C, in case of 
event ]o~j) is: 

E,+ la~121°)(01 + E i -  la~121v)(vl 

and altogether, Upolc = E j  w i ( E i +  la~12)10)(01+ 
E j  %(E~-la~l=)lv)(vl • To complete the proof we jus t  no- 

tice that  y'~.j w j ( E i  + la~l =) = Zrace(ooM) .  The proof for 
Upolc is similar. []  

We now analyze the error detection probability. 

LEMMA 18. Prob(err)  <_ ½(1 --1Vq--~-p) 

PROOF. Say Alice sent Bob the state Iw). We can express 
it as ]w) = a]w +) + b l w - )  where Iw +) E S p a n ( V  + ) and 
]w-)  E S p a n ( V - ) .  Bob apphes U on w and gets 

Ulw ) = alw + , O ) + b l w -  ,v)  

= alw +,0) + X/1 -- pb lw-  ,0) + v ~ b l w - ,  1) 

Therefore, if we measure the last qubit ,  then with proba- 
bihty pb 2 we end up in ]w-)  and with probabili ty 1 - p b  2 
we end up in alw +) + lv/Y-:-~-pblw- ) normalized. Thus  the 
density matr ix  of Ulw ) after tracing out the last qubit  is: 

p = ~a~/1 - p  Ibl ~ 

To find out the probabili ty for Alice not  to detect Bob cheat- 
ing, we calculate (wlPlw). We get: 

Pr(-~Err)  = lal' + 21abJ2x/1 - p + Ibl 4 

= 1 - 2labl2(1 - x/1 - p )  

The probabili ty of Alice detecting an error is thus 2 lab l2(1-  
_ ½ ( 1 -  1,/r=-/-V). []  

REMARK 3. The average of lab] can tend to 0.5, even 
when t tends to O. This can be seen by taking po to be com- 
posed of two states which are the basis states 10) and I1) 
rotated by 0 towards each other, whereas pl is the mixture 
of the basis states rotated by 0 outwards. As  0 tends to O, t 
tends to O, but lab I tend to 0.5. 
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5. PROOF OF T H E O R E M  2 
We show that  no cheater  can control the game. 

W h e n  B o b  c h e a t s  : 

Suppose Alice is honest and Bob is arbitrary. Let us 
look at the mixture  tha t  Alice generates at the first 
step of Protocol  2. Let pb=o be the density mat r ix  in 
the case b = 0, and pb=l in the case b = 1. Then  
[[pb=0- Pb=lllt = 2cos(20). It  follows from Theorem 
3 that  whatever  Bob does, the probabili ty tha t  b' = b 

1 c o s ~ 2 0 )  and Bob wins is at most  Pr(b'  = b) _< $ + = 
is at most  0.86. cos 2(0) which for 0 = g 

W h e n  A l i c e  c h e a t s  : 

Now, suppose Bob is honest and Alice is arbitrary. 
Prob(Alice wins ) = x, which is at most  po+ql, 
whereas the probabili ty tha t  Alice loses is at least 
m+qo The  difference I x -  ( 1 -  x)[ is at most  2 
P O - - q o q - q l - - P l  < IPO--qoI+[PX--qxl _ _  Ipo -qol, i.e., x < 

2 - -  2 
1 + ]po -qo ] 

2 

Also, ~orr+q,r~ < 1 -- X, aS whenever  Alice is caught  
2 

cheating she loses. This  implies tha t  ~ + ~ < 

2 v / 1 -  x as the max imum is obtained when p ~  = 
q e r r  : 1 - -  2g. 

Finally, from the proof of Theorem 5 we have IP0 - 

q0[ _< co~(20) . Pu t t ing  it all together  we get: 

1 + ]P0 - qo I 
x < 

- 2 

1 peT;z+ ~/q,~ < - q -  
- 2 2cos(20) 

1 , / 1  - -  x 

<- ~ + cos(20-----~ 
rr For 0 = g we get the quadrat ic  equat ion 4x 2 + 4 x - 7  _< 

O. Solving it we get x _< - - ~  _< 0.9143. 
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