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ABSTRACT
The design of new quantum algorithms has proven to be
an extremely difficult task. This paper considers a differ-
ent approach to the problem, by studying the problem of
’quantum state generation’.
We first show that any problem in Statistical Zero Knowl-
edge (including eg. discrete log, quadratic residuosity and
gap closest vector in a lattice) can be reduced to an instance
of the quantum state generation problem. Having shown the
generality of the state generation problem, we set the foun-
dations for a new paradigm for quantum state generation.
We define ’Adiabatic State Generation’ (ASG) , which is
based on Hamiltonians instead of unitary gates. We de-
velop tools for ASG including a very general method for im-
plementing Hamiltonians (The sparse Hamiltonian lemma),
and ways to guarantee non negligible spectral gaps (The
jagged adiabatic path lemma). We also prove that ASG
is equivalent in power to state generation in the standard
quantum model. After setting the foundations for ASG, we
show how to apply our techniques to generate interesting
superpositions related to Markov chains.
The ASG approach to quantum algorithms provides in-
triguing links between quantum computation and many dif-
ferent areas: the analysis of spectral gaps and groundstates
of Hamiltonians in physics, rapidly mixing Markov chains,
statistical zero knowledge, and quantum random walks. We
hope that these links will bring new insights and methods
into quantum algorithms.

Categories and Subject Descriptors
F.2.m [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Miscellaneous; F.1.3 [Theory of
Computation]: Computation by abstract devices— com-
plexity measures and classes
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1. INTRODUCTION
Quantum computation carries the hope of solving in quan-
tum polynomial time classically intractable tasks. The most
notable success so far is Shor’s quantum algorithm for factor-
ing integers and for finding the discrete log [40]. Following
Shor’s algorithm, several other algorithms were discovered
[27, 44, 13], all heavily relying on the Fourier transform.
A new black box algorithm was recently discovered which
uses a different approach of quantum random walks, but
the problem it solves is somewhat contrived [9]. One cannot
overstate the importance of developing qualitatively differ-
ent quantum algorithmic techniques and approaches for the
development of the field of quantum computation. In this
paper we attempt to make a step in that direction by ap-
proaching the issue of quantum algorithms from a different
point of view.
It is folklore knowledge that the problem of graph isomor-
phism which is considered classically hard [32] has an effi-
cient quantum algorithm as long as the superposition of all
graphs isomorphic to a given graph, |αG〉 = Pσ∈Sn

|σ(G)〉
can be generated efficiently by a quantum Turing machine
(for simplicity, we ignore normalizing constants in the above
state and in the rest of the paper). To see this notice that
for two isomorphic graphs G1 and G2, |αG1〉 and |αG1 〉 are
identical, whereas for two non isomorphic graphs they are
orthogonal. A simple circuit can then distinguish between
these two cases. One is tempted to assume that |αG〉 is
easy to construct since the equivalent classical distribution,
namely the uniform distribution over all graphs isomorphic
to a certain graph, can be sampled from efficiently. Indeed,
the state |βG〉 =Pσ∈Sn

|σ〉 ⊗ |σ(G)〉 can be efficiently gen-
erated on a quantum computer by this argument; However,
so far no one knows how to generate |αG〉 efficiently, because
we cannot forget the value of |σ〉.
In this paper we systematically study the problem of quan-
tum state generation. We will mostly be interested in a
restricted version of state generation, namely generating
states corresponding to classical probability distributions,
which we loosely refer to as quantum sampling (or Qsam-
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pling) from a distribution. To be more specific, we con-
sider the probability distribution of a circuit, DC , which is
the distribution over the outputs of the classical circuit C

when its inputs are uniformly distributed. Denote |C〉 def
=P

z∈{0,1}m

p
DC(z) |z〉. We define the problem of circuit

quantum sampling:

Definition 1. Circuit Quantum Sampling (CQS):
Input: (ε, C) where C is a description of a classical circuit
from n to m bits, and 0 ≤ ε ≤ 1

2
.

Output: A description of a quantum circuit Q of size
poly(|C|) such that |Q(|�0〉)− |C〉 | ≤ ε.

Connection to Statistical Zero Knowledge. Most prob-
lems that were considered good candidates for BQP, such as
discrete log (DLOG), quadratic residuosity, gap versions of
closest and shortest vectors in a lattice, and graph isomor-
phism, belong to the complexity class statistical zero knowl-
edge, denoted SZK (see section 2 for background.) We prove

Theorem 1. Any L ∈ SZK can be reduced to a family of
instances of CQS.

The proof relies on a reduction by Sahai and Vadhan [39]
from SZK to a complete problem called statistical difference.
Theorem 1 shows that a general solution for quantum sam-
pling would imply SZK ⊆ BQP . We note that there exists
an oracle A relative to which SZKA 	⊂ BQPA [1], and so
such a proof must be non relativizing.
Theorem 1 shows that one can start from a SZK proof for
a problem, and derive a description of classical circuits such
that efficient Quantum sampling from these circuits would
then imply that the problem is in BQP. The derivation of the
circuit specification is in general a complicated task, since it
builds on the reduction of Sahai and Vadhan [39] from SZK
to the complete problem.
We provide one explicit example which is of particular
interest as a candidate for BQP: a gap version of closest
vector in a lattice (CVP). Unlike the general construction,
this reduction from SZK to Qsampling is fairly straightfor-
ward. We use the SZK proof of Goldreich and Goldwasser
[21] to derive an exact specification of the corresponding cir-
cuits which one needs to Qsample from, in order to give a
polynomial quantum algorithm for this problem.
Explicit specifications of the circuits to Qsample from can
be derived also for the problems of discrete log (DL) and
quadratic residuosity (QR), based on the the SZK proofs
for these problems by Goldreich and Kushilevitz [20], and
by Goldwasser, Micali and Rackoff [23], respectively. Like in
the case of CVP, the derivations are fairly straightforward
and are similar conceptually to the CVP case. We will not
do it in this paper due to lack of space, and since these
problems are already known to be in BQP.

The Adiabatic State Generation Paradigm The prob-
lem of what states can be generated efficiently by a quantum
computer is thus of critical importance to the understand-
ing of the computational power of quantum computers. We
therefore embark on the task of designing tools for quantum
state generation, and studying which states can be gener-
ated efficiently. The recently suggested framework of adia-
batic quantum computation [19] seems to be tailored exactly
for this purpose, since it is stated in terms of quantum state
generation; Let us first explain this framework.

Recall that the time evolution of a quantum system’s state
|ψ(t)〉 is described by Schrodinger’s equation:

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉. (1)

where H(t) is an Hermitian operator called the Hamilto-
nian of the system. Adiabatic evolution concerns the case
in which H(t) varies very slowly in time; The qualitative
statement of the adiabatic theorem is that if the quantum
system is initialized in the ground state (the eigenstate with
lowest eigenvalue) of H(0), and if the modification of H
in time is done slowly enough (adiabatically), then the fi-
nal state will be the ground state of the final Hamiltonian
H(T ). Recently, Farhi, Goldstone, Gutmann and Sipser [19]
suggested to use adiabatic evolutions to solve NP -hard lan-
guages. Farhi et. al.’s idea was to find the minimum of
a given function f as follows: H(0) is chosen to be some
generic Hamiltonian. H(T ) is chosen to be the problem
Hamiltonian, namely a matrix which has the values of f
on its diagonal and zero everywhere else. The system is
then initialized in the ground state of H(0) and evolves adi-
abatically on the convex line H(t) = (1− t

T
)H0+

t
T
HT . By

the adiabatic theorem if the evolution is slow enough, the
final state will be the groundstate of H(T ) which is exactly
the sought after minimum of f .
The efficiency of these adiabatic algorithms is determined
by two things. First, H is taken to be local, i.e. a sum of
operators, each operating on a constant number of qubits
out of the n qubits of the system. It was shown in [19,
14] that adiabatic evolutions of such Hamiltonians can be
simulated efficiently on a quantum circuit, and so designing
such a successful process would imply a quantum efficient
algorithm for the problem. Second, the adiabatic evolu-
tion has to be slow enough for the adiabatic theorem to
hold. It turns out that this depends mainly on the spec-
tral gaps of the Hamiltonians H(t). If these spectral gaps
are not too small, the modification of the Hamiltonians can
be done ’fairly fast’, and the adiabatic algorithm then be-
comes efficient. Not much is known about adiabatic com-
putation, since spectral gaps are hard to analyze in general.
[16, 11, 17] study numerically the performance of adiabatic
algorithms on random instances of NP complete problems.
[14, 38] proved that Grover’s quadratic speed up [25] can be
achieved adiabatically, and [14, 15] also give lower bounds
for specific cases of adiabatic algorithms.
In this paper, we propose to use the language of Adiabatic
evolutions, Hamiltonians, ground states and spectral gaps as
a theoretical framework for quantum state generation. Our
goal is not to replace the quantum circuit model, neither to
improve on it, but rather to develop a paradigm, or a lan-
guage, in which quantum state generation can be studied
conveniently. The advantage in using the Hamiltonian lan-
guage is that the task of quantum state generation becomes
much more natural, since adiabatic evolution is cast in the
language of state generation. Furthermore, as we will see,
it seems that this language lends itself more easily than the
standard circuit model to developing general tools.
In order to provide a framework for the study of state
generation using the adiabatic language, we define adia-
batic state generation (ASG) as general as we can. Thus,
we replace the requirement that the Hamiltonians are on a
straight line H(t) = (1− t

T
)H0 +

t
T
HT , with Hamiltonians

on any general path. Second, we replace the requirement
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that the Hamiltonians are local, with the requirement that
they are simulatable, i.e., that the unitary matrix e−itH(s)

can be approximated by a quantum circuit to within any
polynomial accuracy for any polynomially bounded time t.
We thus still use the standard model of quantum circuits in
our paradigm to simulate the adiabatic process. Our goal is
therefore to derive quantum circuits solving the state gener-
ation problem, from state generation algorithms cast in the
ASG framework.
The fact that any ASG can be simulated efficiently by
a quantum circuit, follows from the adiabatic theorem and
from a generalization of techniques in [19, 14]. An alterna-
tive proof which does not rely on the adiabatic theorem is
given in a fuller version of this paper [2], using the much
simpler Zeno effect [37]. See [10] for a related approach of
measurement based adiabatic computation.

Foundations of ASG. The first question that one encoun-
ters is naturally, what kind of Hamiltonians can be used in
ASG algorithms. In other words, when is it possible to sim-
ulate, or implement, a Hamiltonian efficiently. To this end
we prove the sparse Hamiltonian lemma which gives a very
general condition for a Hamiltonian to be simulatable. A
Hamiltonian H on n qubits is row-sparse if the number of
non-zero entries at each row is polynomially bounded. H is
said to be row-computable if there exists a (quantum or clas-
sical) efficient algorithm that given i outputs a list (j, Hi,j)
running over all non zero entries Hi,j . As a norm for Hamil-
tonians we use the spectral norm (see section 3.1.1).

Lemma 1. (The sparse Hamiltonian lemma). If H is
a row-sparse, row-computable Hamiltonian on n qubits and
||H || ≤ poly(n), then H is simulatable.

We note that this lemma is useful also in two other con-
texts: first, in the context of simulating complicated physi-
cal systems on a quantum circuit. Second, for efficient im-
plementation of continuous quantum walks [12] which are
based on Hamiltonians. For example, lemma 1 can be used
to simplify the Hamiltonian implementation in the recently
discovered exponential quantum speed up using quantum
walks [9].
The next question that one encounters in designing ASG
algorithms concerns bounding the spectral gap. We need
tools to find paths in the Hamiltonian space such that the
spectral gaps are guaranteed to be non negligible, i.e. larger
than 1/poly(n). Our next lemma provides a way to do this
in certain cases. Denote α(H) to be the ground state of H
(if unique.)

Lemma 2. (The Jagged Adiabatic Path lemma). Let

{Hj}T=poly(n)
j=1 be a sequence of simulatable Hamiltonians

on n qubits, all with polynomially bounded norm, non-
negligible spectral gaps and with groundvalues 0, such that
the inner product between the unique ground states α(Hj)
and α(Hj+1) is non negligible for all j. Then there is an
efficient quantum algorithm that takes α(H0) to within ar-
bitrarily small distance from α(HT ).

To prove this lemma we develop two simple but very useful
tools for manipulating Hamiltonians in the context of ASG:
The Hamiltonian-to-Projection Lemma, (Lemma 4) and the
Two Dimensional Adiabatic Lemma (Lemma 5).
Finally, we use the above developed tools to show that
the question of the complexity of quantum state generation

is equivalent (up to polynomial terms) in the circuit model
and in the ASG model, and so it is sufficient to study state
generation in the ASG paradigm.

Theorem 2. |α〉 can be efficiently generated in the circuit
model iff it can be efficiently generated by ASG.

Using ASG for Markov chain related states In the
final part of the paper we demonstrate how our methods
for ASG work for Qsampling from the limiting distribu-
tions of Markov chains. A Markov chain is rapidly mixing
if and only if the second eigenvalue gap, namely the differ-
ence between the largest and second largest eigenvalue of
the Markov matrix M , is non negligible [4]. This clearly
bears resemblance to the adiabatic condition of a non negli-
gible spectral gap, and suggests to look at Hamiltonians of
the form HM = I −M . HM will be a Hamiltonian if M is
symmetric; ifM is not symmetric but is a reversible Markov
chain [34] we can still define the Hamiltonian corresponding
to it (see section 4.) The sparse Hamiltonian lemma has
as an immediate corollary that for a special type of Markov
chains, which we call strongly samplable, the quantum ana-
log of the Markov chain can be implemented:

Corroloary 1. IfM is a strongly samplable Markov chain,
then HM is simulatable.

To apply the ASG framework for Qsampling from limiting
distributions of Markov chains, it is natural to consider se-
quences of Markov chains, where each Markov chain in the
sequence is close (in some well defined sense) to the next
Markov chain in the sequence. Such sequences appear nat-
urally in the context of a very commonly used paradigm in
randomized algorithms, namely approximate counting [29].
We show:

Theorem 3. (Loosely:) Let A be an efficient randomized
algorithm to approximately count a set Ω, which uses slowly
varying Markov chains starting from a simple Markov chain.
Then there is an efficient quantum algorithm Q that Qsam-
ples from the final limiting distribution over Ω.

We stress that it is NOT the case that we are interested in
a quantum speed up for sampling from various distributions
but rather we are interested in the efficient generation of the
quantum state corresponding to the classical distribution.
Essentially all Markov chains that are used in approxi-
mate counting that we are aware of meet the criteria of the
theorem. The following is a partial list of states we can
Qsample from using Theorem 3, where the citations refer to
the approximate algorithms that we use as the basis for the
quantum sampling algorithm. Uniform superposition over
all perfect matchings of a given bipartite graph [28], all span-
ning trees of a given graph [8], all lattice points contained in
a high dimensional convex body satisfying the conditions of
[6], various Gibbs distribution over rapidly mixing Markov
chains using the Metropolis filter [34], and log-concave distri-
butions [6]. We note that some of these states (perhaps all)
can be generated using standard techniques which exploit
the self reducibility of the problem (see [26]). We stress how-
ever that our techniques are qualitatively and significantly
different from previous techniques for generating quantum
states, and in particular do not require self reducibility. This
can be important for extending this approach to other states.
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Connections to other areas and Open Questions In
this paper we suggest to use the language of Hamiltonians
and spectral gaps. This direction points at very interest-
ing and intriguing connections between quantum computa-
tion and many different areas: SZK, adiabatic evolution,
rapidly mixing Markov chains and their spectral gap analysis
[34], quantum walks [9], and the study of ground states and
spectral gaps of Hamiltonians in Physics, which is a lively
area of research (see [41] and references therein). Hopefully,
these connections will bring techniques and insights from
these fields to quantum computation. As an interesting first
step, it would be insightful to find alternative algorithms to
quadratic residuosity and discrete log by ASG of the states
derived by theorem 1 for these problems.

Organization of paper The rest of the paper is divided
to three sections which are almost completely independent.
Section 2 gives the results related to SZK. Section 3 gives
the foundations for the ASG framework: definition, tools,
and the equivalence to standard state generation. Section 4
draws the connection to Markov chains and shows how to
use ASG to Qsample from approximately countable sets.

2. QSAMPLING AND SZK

2.1 SZK
The complexity class Statistical Zero Knowledge (SZK) is
defined using interactive proofs systems. Here we omit this
definition, since it is not needed for this paper. Instead we
will use the characterization of SZK by a complete problem
for SZK, called statistical difference (SD), which we describe
shortly. SD was recently shown to be complete for SZK by
Sahai and Vadhan [39]. The nice thing about SD is that it
does not mention interactive proofs in any explicit or im-
plicit way. For excellent sources on SZK see [43, 39]. It is
known that BPP ⊆ SZK ⊆ AM ∩ coAM and that SZK
is closed under complement. It follows (see [43]) that SZK
does not contain any NP–complete language unless the poly-
nomial hierarchy collapses.

2.2 Statistical Difference (SD)
We need some facts about distances between distributions
to define the complete problem SD. For two classical distri-
butions {p(x)}, {q(x)} define their )1 distance and their fi-
delity (this measure is known by many other names as well):

|p− q|1 =
X
x

|p(x)− q(x)|

F (p, q) =
X
x

p
p(x)q(x)

We also define the variation distance to be ||p−q|| = 1
2
|p−q|1

so that it is a value between 0 and 1.

Fact 1. (See [36]) 1−F (p, q) ≤ ||p− q|| ≤p1− F (p, q)2.

We can now define the complete problem for SZK:

Definition 2. Statistical Difference (SDα,β)

Input : Two classical circuits C0, C1 with m output bits.

Promise : ||DC0 −DC1 || ≥ α or ||DC0 −DC1 || ≤ β.

Output : Which of the two possibilities occurs? (yes for
the first case and no for the second)

Sahai and Vadhan [39, 43] show that for any two constants
0 ≤ β < α ≤ 1 where α2 > β, SDα,β is complete for SZK.

2.3 Reduction from SZK to Qsampling.
To prove Theorem 1 we need a very simple building block
which can be proved by direct calculation:

Claim 1. Let ψ = 1√
2
(|0, v〉 + |1, w〉), apply a Hadamard

gate on the first qubit and measure it. The probability of

answer 0 is 1+Real(〈v|w〉)
2

.

Proof. (of Theorem 1) We show that SD1/4,3/4 ⊆ BQP .
Let C0, C1 be an input to an SD1/4,3/4 problem, and say
C0, C1 are circuits with m outputs. Let us first assume that
we can Qsample from both circuits with ε = 0 error. We can
therefore generate the superposition 1√

2
(|0〉 |C0〉+ |1〉 |C1〉).

We then apply a Hadamard gate on the first qubit and mea-
sure it. Using claim 1 with v = |C0〉, w = |C1〉, we have:

〈v|w〉 =
X

z∈{0,1}m

p
DC0(z)DC1(z) = F (DC0 ,DC0) (2)

We therefore get 0 with probability
1+F (DC0 ,DC0 )

2
. Thus,

• If ||DC0−DC1 || ≥ α, then we measure 0 with probabil-

ity
1+F (DC0 ,DC0 )

2
≤ 1+

√
1−||DC0−DC1 ||2

2
≤ 1+

√
1−α2

2
≤

0.831, while,

• If ||DC0 −DC1 || ≤ β, then we measure 0 with proba-

bility
1+F (DC0 ,DC0 )

2
≥ 2−||DC0−DC1 ||

2
≥ 1 − β

2
≥ 7

8
=

0.875.

Repeating the experiment O(log( 1
δ
)) times, we can decide

on the right answer with error probability smaller than δ. If
the Qsampling circuit has a small error (say ε < 1

100
) then

the same argument holds with small corrections.

2.4 Reduction of gapCVP to Qsampling
A lattice of dimension n is represented by a basis, denoted

B, which is an n × n non-singular matrix over R. The lat-
tice L(B) is the set of points L(B) = {Bw | w ∈ Z

n}, i.e.,
all integer linear combinations of the columns of B. The
distance d(v1, v2) between two points is the Euclidean dis-
tance )2. The distance between a point v and a set A is
d(v,A) = mina∈A d(v, a). We also denote ||S|| the length of
the largest vector of the set S. The closest vector problem,
CVP, gets as input an n–dimensional lattice B and a target
vector v ∈ R

n . The output should be the point b ∈ L(B)
closest to v. CVP is NP hard. Furthermore, it is NP hard to
approximate the distance to the closest vector in the lattice
to within small factors, and it is easy to approximate it to
within 2εn factor, for every ε > 0. See [21] for a discussion.
[21] proves that the following version of CVP is in SZK.

The problem gapCVP.

• Input: An n–dimensional lattice B, a vector v ∈ R
n

and designated distance d. We set g = g(n) =
q

n
c log n

,

for some c > 0.

• Promise: Either d(v,L(B)) ≤ d or d(v,L(B)) ≥ g · d.
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• Output: “Yes” for first case, “No” for second.
The reduction. Given an input (B,v,d) for the gapCVP
problem, we describe a classical circuit C0, an input to the
Qsampling problem. We let Ht denote the sphere of all
points in Rn of distance at most t from the origin. The
circuit C0 gets as input a random string, and outputs the
vector r+η, where r is a uniformly random point in L(B)∩
H2n·||B∪{v}|| (The lattice points inside a very large sphere),
and η is a uniformly random point η ∈ H g

2 ·d. [21] explain
how to sample such points with almost the right distribu-
tion, i.e. they give a description of an efficient such C0. We
remark that actually, the points cannot be randomly chosen
from the real (continuous) vector space, due to precision
issues, but [21] shows that taking a fine enough discrete ap-
proximation results in an exponentially small error.

Correctness. We need to show that efficient Qsampling
from C0 implies a BQP algorithm for the above gapCVP
problem. In fact, we will get an RQP (one sided error) al-
gorithm. The algorithm is defined as follows. First, define
another circuit, C1, to be like C0 except that the outputs
are shifted by the vector v and become r + η + v. If we can
Qsample from C0, we can also Qsample from C1 by applying
a shift by v at the end. To solve the gap problem the algo-
rithm creates the state 1√

2
[ |0〉 |C0〉+|1〉 |C1〉 ] and proceeds

as in Claim 1. We show that this indeed gives the correct
answer in the two possible cases. If v is far away from the lat-
tice L(B), then the calculation at [21] shows that the states
|C0〉 and |C1〉 have no overlap and so 〈C0|C1〉 = 0. On the
other hand, suppose v is close to the lattice, d(v,L(B)) ≤ d.
Notice that in this case, the spheres of radius gd/2 around
a lattice point r, and around r+ v have a large overlap. In-
deed, the argument of [21] shows that the variation distance
between the two distributions, ‖DC0 −DC1‖ ≤ 1−n−2c. By
fact 1 we have 〈C0|C1〉 = F (DC0 ,DC1) ≥ n−2c. Iterating
the above poly(n) times we get an RQP algorithm.

3. ADIABATIC STATE GENERATION (ASG)

3.1 Physics Background

3.1.1 Norms
The spectral norm of a linear transformation T , induced

by the l2 norm, is ||T || = maxψ �=0
|Tψ|
|ψ| . For T Hermitian

||T || equals the largest absolute value of its eigenvalues. For
U unitary, ||U || = 1. Also, ||AB|| ≤ ||A|| · ||B||, and ||A|| ≥
maxk,& |Ak,&| def

= A∞. We say a linear transformation T2 α–
approximates a linear transformation T1 if ||T1 − T2|| ≤ α.

3.1.2 Trotter Formula
Say H =

P
Hm with each Hm Hermitian. Trotter’s for-

mula states that one can approximate e−itH by slowly in-
terleaving executions of e−itHm for different m′s. We use a
variant of it which can be proved using standard techniques
from [36]. Define:

Uδ = e−δiH1 · e−δiH2 · . . . · e−δiHM (3)

Lemma 3. Let Hi be Hermitian, H =
PM

m=1 Hm. As-
sume ||H ||, ||Hi|| ≤ Λ. Then, for every t > 0

||U� t
δ
�

δ − e−itH || ≤ O(MΛ · δ +M2Λ2t · δ) (4)

Notice that for every fixed t,M and Λ, the error term goes
down to zero with δ. In applications, we will pick δ to be
polynomially small, in such a way that the above error term
is polynomially small.

3.1.3 Time Dependent Schrodinger Equation
The evolution of the state from time 0 to time T can
be described by integrating Schrodinger’s equation (1) over
time. If H is constant and independent of time, one gets

|ψ(T )〉 = U(T )|ψ(0)〉 = e−iHT |ψ(0)〉 (5)

Since H is Hermitian, e−iHT is unitary. The result of the in-
tegration is unitary also for time dependent Hamiltonians,
which gives the familiar unitary evolution from quantum
circuits. The groundstate of a Hamiltonian H is the eigen-
state with the smallest eigenvalue, and if it is unique we
denote it by α(H). The spectral gap of a Hamiltonian H is
the difference between the smallest and second to smallest
eigenvalues, and we denote it by ∆(H).

3.1.4 The adiabatic Theorem
In the study of adiabatic evolution one is interested in the
long time behavior (at large times T ) of a quantum sys-
tem initialized in the ground state of H at time 0 when the
Hamiltonian of the system, H(t) changes very slowly in time,
namely adiabatically. To state the adiabatic theorem [7, 30,
35], it is convenient and traditional to work with a re-scaled
time s = t

T
where T is the total time. The Schrodinger’s

equation restated in terms of the re-scaled time s then reads

i~
d

ds
|ψ(s)〉 = T ·H(s)|ψ(s)〉 (6)

where T = dt
ds
can be referred to as the delay schedule, or

the total time.

Theorem 4. (The adiabatic theorem, adapted from
[35, 19]). Let H(·) be a function from [0, 1] to the vector
space of Hamiltonians on n qubits. Assume H(·) is contin-
uous, has a unique ground state, for every s ∈ [0, 1], and is
differentiable in all but possibly finitely many points. Let
ε > 0 and assume that the following adiabatic condition
holds for all points s ∈ (0, 1) in which the derivative is de-
fined:

Tε ≥ ‖ d
ds
H(s)‖

(∆(H(s))2
(7)

Then, a quantum system that is initialized at time 0 with the
ground state α(H(0)), and evolves according to Equation (6)
with H(·), ends up at re-scaled time 1 at a state |ψ(1)〉 that
is within εc distance from α(H(1)) for some constant c > 0.

We will refer to Equation (7) as the adiabatic condition.
The proof of the adiabatic theorem is rather involved. For
intuition, consider Schrodinger’s equation for eigenstates of
H ; If the eigenvalue is λ, the eigenstate evolves by a multi-
plicative factor eiλt, which rotates in time faster the larger
the absolute value of the eigenvalue λ is, and so the ground-
state rotates the least. The fast rotations are essentially
responsible to the cancellations of the contributions of the
vectors with the higher eigenvalues, due to interference.

3.2 Adiabatic Quantum State Generation
In this section we define our paradigm for quantum state

generation, generalizing the ideas of adiabatic quantum com-
putation (and the adiabatic theorem). We define:
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Definition 3. (Simulatable Hamiltonians). We say a
Hamiltonian H on n qubits is simulatable if for every t > 0
and every accuracy 0 < α < 1 the unitary transformation
U(t) = e−iHt can be approximated to within α accuracy by
a quantum circuit of size poly(n, t, 1/α).

If H is simulatable, then by definition so is cH for any
0 ≤ c ≤ poly(n). It therefore follows by Trotter’s formula
(Lemma 3) that any convex combination of two simulat-
able, bounded norm Hamiltonians is simulatable. Also, If
H is simulatable and U is a unitary matrix that can be ef-
ficiently applied by a quantum circuit, then UHU† is also
simulatable, because e−itUHU†

= Ue−itHU†. The interested
reader is referred to [36, 9] for a more complete set of rules
for simulating Hamiltonians. We now describe an adiabatic
path, which is an allowable path in the Hamiltonian space:

Definition 4. (Adiabatic path). A function H from s ∈
[0, 1] to the vector space of Hamiltonians on n qubits, is
an adiabatic path if H(s) is always continuous, differentiable
except for finitely many points, for every s H(s) has a unique
groundstate, and for every s H(s) is simulatable given s.

Definition 5. (Adiabatic Quantum State Generation
[ASG]). An adiabatic Quantum State Generator (Hx(s), T, ε)
has for every x ∈ {0, 1}n an adiabatic path Hx(s), such that
for the given T, ε the adiabatic condition is satisfied for all
s ∈ [0, 1] where it is defined. We also require that the gen-
erator is explicit, i.e., that there exists a polynomial time
quantum machine that

• On input x ∈ {0, 1}n outputs α(Hx(0)), the ground-
state of Hx(0), and,

• On input x ∈ {0, 1}n, s ∈ [0, 1] and δ > 0 outputs a

circuit Cx(s) approximating e
−iδHx(s).

We then say the generator adiabatically generates α(Hx(1)).

Remark: We note that in previous papers on adiabatic com-
putation, eg. in [14], a delay schedule τ (s) which is a func-
tion of s was used. We chose to work with one single delay
parameter, T , instead, which might seem restrictive; How-
ever, working with a single parameter does not restrict the
model since more complicated delay schedules can be en-
coded into the dependence on s.

3.3 Circuit simulation of ASG
An ASG can be simulated efficiently by a quantum circuit:

Claim 2. (Circuit simulation of ASG). Let (Hx(s), T, ε)
be an ASG. Assume T ≤ poly(n). Then, there exists a quan-
tum circuit that on input x generates the state α(Hx(1)) to
within ε accuracy, with size poly(T, 1/ε, n).

Proof. (Based on Adiabatic Theorem) This proof
is very similar to the proof given in [14] for the fact that
adiabatic evolution can be simulated by quantum circuits
efficiently. The circuit is built by discretizing time to suffi-
ciently small intervals of length δ, and then applying the uni-
tary matrices e−iH(δj)δ. Intuitively this should work, since
the adiabatic theorem tells us that a physical system evolv-
ing for time T according to Schrodinger’s equation with the
given adiabatic path will end up in a state close to α(Hx(1)),
and the discretization introduces only a small error if δ is
small enough. The formal error analysis can be done by
exactly the same techniques that were used in [14].

We sketch another proof here which does not rely on the
adiabatic theorem and can be derived from first principles:

Proof. (Based on the Zeno effect) For the full proof
see [2]. As before, we begin at the state α(H(0)), and the
circuit is built by discretizing time to sufficiently small inter-
vals of length δ. At each time step j, j = 1, . . . , R, instead of
simulating the Hamiltonian we measure the state in a basis
which includes the groundstate α(H(sj)). This can be done
using Lemma 4 below. If R is sufficiently large, the adi-
abatic condition ensures that subsequent Hamiltonians are
very close in the spectral norm. Furthermore, because T is
polynomially bounded, the spectral gaps are non negligible.
It can be shown that these two facts imply that subsequent
groundstates are very close. Given that at time step j the
state is the groundstate α(H(sj)), the next measurement re-
sults with very high probability in a projection on the new
groundstate α(H(sj+1)). The Zeno effect guarantees that
the error probability behaves like 1/R2, i.e. quadratically in
R (and not linearly), and so the accumulated error after R
steps is still small, which implies that the probability that
the final state is the groundstate of H(1) is very high, if R
is taken to be large enough.

3.4 The Sparse Hamiltonian Lemma
The main idea of the proof of Lemma 1 is to explicitly
write H as a sum of polynomially many bounded norm
Hamiltonians Hm which are all block diagonal (in a com-
binatorial sense) and such that the size of the blocks in each
matrix is at most 2×2. We then show that each Hamiltonian
Hm is simulatable and use Trotter’s formula to simulate H .

3.4.1 The reduction to 2× 2 block matrices.

Definition 6. (Combinatorial block.) Let A be a matrix
with rows R(A) and columns C(A). We say (R,C) ⊆ R(A)×
C(A) is a combinatorial block if |R| = |C|, for every c ∈ C,
r 	∈ R, A(c, r) = 0, and for every c 	∈ C, r ∈ R, A(c, r) = 0.

A is block diagonal in the combinatorial sense iff there is
some renaming of the nodes under which it becomes block
diagonal in the usual sense. Equivalently, A is block diagonal
in the combinatorial sense iff there is a decomposition of
its rows into R(A) =

SB
b=1 Rb, and of its columns C(A) =SB

b=1 Cb such that for every b, (Rb, Cb) is a combinatorial
block. We say A is 2× 2 combinatorially block diagonal, if
each combinatorial block (Rb, Cb) is at most 2 × 2, i.e., for
every b either |Rb| = |Cb| = 1 or |Rb| = |Cb| = 2.

Claim 3. (Decomposition lemma). Let H be a row-
sparse, row-computable Hamiltonian over n qubits, with at
most D non-zero elements in each row. Then there is a way

to decompose H into H =
P(D+1)2n6

m=1 Hm where:

• Each Hm is a row-sparse, row-computable Hamilto-
nian over n qubits, and,

• Each Hm is 2× 2 combinatorially block diagonal.
Proof. (Of Claim 3) We color all the entries of H with

(D+1)2n6 colors. For (i, j) ∈ [N ]× [N ] and i < j (i.e., (i, j)
is an upper-diagonal entry) we define the coloring colH(i, j)
to be the tuple (k, i mod k, j mod k, rindH(i, j), cindH (i, j))
where
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• If i = j we set k = 1, otherwise we let k be the first
integer in the range [2..n2] such that i 	= j(modk),
and we know there must be such a k.

• If Hi,j = 0 we set rindH(i, j) = 0, otherwise we let
rindH(i, j) be the index of Hi,j in the list of all non-
zero elements in the i’th row of H . cindH(i, j) is sim-
ilar, but with regard to the columns of H .

For lower-diagonal entries, i > j, we define colH(i, j) =
colH(j, i). Altogether, we use (n

2)3 · (D + 1)2 colors.
For a colorm, we defineHm[i, j] = H [i, j]·δcolH (i,j),m, i.e.,

Hm is H on the entries colored by m and zero everywhere
else. Clearly, H =

P
m Hm and each Hm is Hermitian.

Also as H is row-sparse and row-computable, there is a sim-
ple poly(n)-time classical algorithm computing the coloring
colH(i, j), and so each Hm is also row-computable. It is left
to show that it is 2× 2 combinatorially block-diagonal.
Indeed, fix a color m. Let NZm be the set of all upper-
triangular, non-zero elements of Hm. Say the elements of
NZm are {(i1, j1), . . . , (iB, jB)}. For every element (ib, jb) ∈
NZm we introduce a block. If ib = jb then we set Rb = Cb =
{ib} while if ib 	= jb then we set Rb = Cb = {ib, jb}.
Say ib 	= jb (the ib = jb case is similar and simpler). As the
color m contains the row-index and column-index of (ib, jb),
it must be the case that (ib, jb) is the only element in NZm

from that row (or column). Furthermore, as ib mod k 	=
jb mod k, and both k, i mod k and j mod k are included in
the color m, it must be the case that there are no elements
in NZm that belong to the jb row or ib column (see Figure
1). It follows that (Rb, Cb) is a block. We therefore see that
Hm is 2× 2 combinatorially block-diagonal as desired.

Figure 1: In the upper diagonal side of
the matrix Hm: the row and column of
(ib, jb) are empty because the color m con-
tains the row-index and column index of
(i, j), and the jb’th row and ib’th column
are empty because m contains k, i mod
k, j mod k and i mod k 	= j mod k. The
lower diagonal side of Hm is just a reflec-
tion of the upper diagonal side. It follows
that {ib, jb} is a 2×2 combinatorial block.

Claim 4. For every m, ||Hm|| ≤ ||H ||.
Proof. Fix an m. Hm is combinatorially block diagonal

and therefore its norm ||Hm|| is achieved as the norm of one
of its blocks. Now, Hm blocks are either

• 1 × 1, and then the block is (Hi,i) for some i, and it
has norm |Hi,i|, or,

• 2× 2, and then the block is
�
0 Hk,&

H∗
k,& 0

�
for some

k, ), and has norm |Hk,&|.
It follows that maxm ||Hm|| ≤ maxk,& |Hk,&|. On the other
hand ||H || ≥ maxk,& |Hk,&|. The proof follows.
3.4.2 2× 2 block matrices are simulatable.

Claim 5. Every 2×2 combinatorially block diagonal, row-
computable Hamiltonian A is simulatable to within arbi-
trary polynomial approximation.

Proof. Let t > 0 and α > 0 an accuracy parameter.
The simulating quantum circuit. A is 2×2 combinatorially
block diagonal. Let |k〉 be a basis state, and let k belong
to the 2 × 2 block {k, )} in A. We note that A leaves the
subspace spanned by |k〉, |)〉 invariant. Set bk = 2 (for a
2× 2 block) and mk = min(k, )), Mk = max(k, )). We then
set Ak to be the part of A relevant to this subspace Ak =�

Amk,mk Amk,Mk

AMk,mk AMk,Mk

�
and Uk = e−itAk . If |k〉 belongs

to a 1 × 1 block we similarly define bk = 1, mk = Mk =
k, Ak = (Ak,k) and Uk = (e

−itAk). Our approximation
circuit simulates the application of Uk on |k〉. We need two
transformations. We define

T1 : |k, 0〉 →
���bk,mk,Mk,fAk,fUk, k

E
where fAk is our approximation to the entries of Ak and fUk

is our approximation to e−itgAk , and where both matrices
are expressed by their four (or one) entries. We use αO(1)

accuracy.

Having fUk,mk,Mk, k written down, we can simulate the

action of fUk. We can therefore have an efficient unitary
transformation T2:

T2 :
���fUk,mk,Mk

E
|v〉 =

���fUk,mk,Mk

E ���fUkv
E

for |v〉 ∈ Span{mk,Mk}. Our algorithm is applying T1 fol-
lowed by T2 and then T−1

1 for cleanup.
Correctness. Let us denote Diff = e−itA − T−1

1 T2T1. Our
goal is to show that ||Diff|| ≤ α. We notice that Diff is
also 2 × 2 block diagonal, and therefore its norm can be
achieved by a vector ψ belonging to one of its dimension
one or two subspaces, say to Span{mk,Mk}. Let Uk |ψ〉 =
α |mk〉+ β |Mk〉 and fUk |ψ〉 = eα |mk〉+ eβ |Mk〉. We see that
|ψ0〉 is mapped to

T1−→
���bk,mk,Mk,fAk,fUk, ψ

E
T2−→
���bk,mk,Mk,fAk,fUk,fUkψ

E
= eα ���bk,mk,Mk,fAk,fUk,mk

E
+ eβ ���bk,mk,Mk,fAk,fUk,Mk

E
T−1
1−→ eα |mk, 0〉+ eβ |Mk, 0〉

where the first equation holds since it holds for |mk〉, |Mk〉
and by linearity it holds for the whole subspace spanned by

them. We conclude that |Diff |ψ〉 | = |(Uk −fUk) |ψ〉 | and so
||Diff|| ≤ maxk ||Uk − fUk||. However, by our construction,
||fAk −Ak||∞ ≤ αO(1) and so ||fUk −Uk|| ≤ α as desired.

We proved the claim for matrices with 2 × 2 combinato-
rial blocks. We remark that the same approach works for
matrices with m×m combinatorial blocks, for m = poly(n).

3.4.3 Proving the Sparse Hamiltonian Lemma

Proof. (Of Lemma 1.) Let H be row-sparse with D ≤
poly(n) non-zero elements in each row, and ||H || = Λ ≤
poly(n). Let t > 0. Our goal is to efficiently simulate e−itH

to within α accuracy.
We express H =

PM
m=1 Hm as in Claim 3, M ≤ (D +

1)2n6 ≤ poly(n). We choose δ such thatO(MΛδ+M2Λ2tδ) ≤
α
2
. Note that 1

δ
≤ poly(t, n) for some large enough polyno-

mial. We then compute U
� t

δ
�

δ to within α
2
accuracy, us-

ing as in Lemma 3, our approximations to e−iδHm (where
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each e−iδHm is computed to within O( α
Mt/δ

) accuracy.) By

Lemma 3 our computation is α
2
close to e−itH , as desired

(using the fact that for every m, ||Hm|| ≤ ||H || = Λ ≤
poly(n) by Claim 4). The size of the computation is t

δ
·M ·

poly(δ,M, n, α) = poly(n, t, α) as required.

3.5 The Jagged Adiabatic Path Lemma

Proof. (of Lemma 2)We consider the sequence of Hamil-
tonians

�
ΠHj

	
where ΠH is a projection on the space or-

thogonal to the groundstate of Hj , and we connect two
neighboring projections by a line. We prove in Lemma 4, us-
ing Kitaev’s phase estimation algorithm, that the fact that
Hj is simulatable implies that so is ΠHj . Also, as projec-
tions, ΠHj have bounded norms, ||ΠHj || ≤ 1. It follows
then, by the results mentioned in Section 3.1, that all the
Hamiltonians on the path connecting these projections are
simulatable, as convex combinations of simulatable Hamil-
tonians.
We now have to show the Hamiltonians on the path have
non negligible spectral gap. By definition ΠHj has a spec-
tral gap equal to 1. It remains to show, however, that the
Hamiltonians on the line connecting ΠHj and ΠHj+1 have
large spectral gaps, which we prove in the simple Lemma 5.
We can now apply the adiabatic theorem and get Lemma
2. Indeed, a linear time parameterization suffices to show
that this algorithm satisfies the adiabatic condition.

We note that Lemma 4 is crucial for the above proof, since
if we use the Hamiltonians directly and not their projections,
the path connecting them might have 0 spectral gap. We
now turn to the proofs of Lemmas 4 and 5.

Lemma 4. (Hamiltonian-to-projection lemma). Let
H be a Hamiltonian on n qubits such that e−iH can be ap-
proximated to within arbitrary polynomial accuracy by a
polynomial quantum circuit, and let ‖H‖ ≤ m = poly(n).
Let ∆(H) be non negligible, and larger than 1/nc, and fur-
ther assume that the groundvalue of H is 0. Then the pro-
jection ΠH , is simulatable.

Proof. First apply Kitaev’s phase estimation algorithm
[31, 36]. As the spectral gap is non-negligible we can de-
cide with exponentially good confidence whether an eigen-
state has the lowest eigenvalue or a larger eigenvalue. We
can therefore write down one bit of information on an extra
qubit: whether an input eigenstate of H is the ground state
or orthogonal to it.
Second, apply a phase shift of value e−it to this extra
qubit, conditioned that it is in the state |1〉 (if it is |0〉 we
do nothing). This conditional phase shift corresponds to ap-
plying for time t a Hamiltonian with two eigenspaces, the
ground state and the subspace orthogonal to it, with re-
spective eigenvalues 0 and 1, which is exactly the desired
projection.
Finally, to erase the extra qubit written down, we re-
verse the first step and uncalculate the information writ-
ten on that qubit using Kitaev’s phase estimation algorithm
again.

For a vector |α〉, the Hamiltonian Hα = I − |α〉〈α| is the
projection onto the subspace orthogonal to α. We prove:

Lemma 5. The Two Dimensional Adiabatic Lemma
Let |α〉 , |β〉 be two vectors in some subspace, Hα = I−|α〉〈α|

and Hβ = I − |β〉〈β|. For any convex combination Hη =
(1 − η)(I − |α〉〈α|) + η(I − |β〉〈β|), η ∈ [0, 1], of the two
Hamiltonians Hα,Hβ, ∆(Hη) ≥ |〈α|β〉|.

Proof. Observe that the problem is two dimensional:
write |β〉 = a|α〉+b|α⊥〉, write the matrixHη in an orthonor-
mal basis which contains |α〉 and |α⊥〉, and diagonalize to
find the eigenvalues.

3.6 Equivalence of Standard and Adiabatic
State Generation

The proof of theorem 2 consists of two directions. We
already saw one direction in claim 2, and now we give the
other direction.

Claim 6. let |φ〉 be the final state of a quantum circuit
C with M gates, then there is an ASG which outputs this
state, of complexity poly(n,M).

Proof. W.l.o.g. the circuit starts in the state |0〉. We
first modify the circuit so that the state does not change
too much between subsequent time steps. The reason we
need this will become apparent shortly. To make this mod-
ification, let us assume for concreteness that the quantum
circuit C uses only Hadamard gates, Toffoli gates and Not
gates. This set of gates was shown to be universal by Shi
[42, 3]. (Our proof works with any universal set with ob-
vious modifications.) We replace each gate g in the circuit
by two

√
g gates. For

√
g we can choose any of the possi-

ble square roots arbitrarily, but for concreteness we notice
that Hadamard, Not and Toffoli gates have ±1 eigenvalues,
and we choose

√
1 = 1 and

√−1 = i. We call the modified
circuit C′. Obviously C and C′ compute the same function.

The path. We let M ′ be the number of gates in C′. For
integer 0 ≤ j ≤ M ′, we set

Hx(
j

M ′ ) = I − |αx(j)〉〈αx(j)|

where |αx(j)〉 is the state of the system after applying the
first j gates of C′ on the input x. For s = j+η

M′ , η ∈ [0, 1),
define Hx(s) = (1− η)Hx(j) + ηHx(j + 1).

The spectral gaps are large. Clearly all the Hamiltonians
Hx(j) for integer 0 ≤ j ≤ M ′, have non-negligible spectral
gaps, since they are projections. We claim that for any state
β and any gate

√
g, |〈β|√g|β〉| ≥ 1√

2
. Indeed, represent

β as a1v1 + a2v2 where v1 belongs to the 1-eigenspace of√
g and v2 belongs to the i-eigenspace of

√
g. We see that

|〈β|√g|β〉| = ||a1|2 + i|a2|2|. As |a1|2 + |a2|2 = 1, a little
algebra shows that this quantity is at least 1√

2
. In particular,

setting β = αx(j) we see that |〈αx(j)|αx(j + 1)〉| ≥ 1√
2
. It

therefore follows by Lemma 5 that all the Hamiltonians on
the line between Hx(j) and Hx(j + 1) have spectral gaps
larger than 1√

2
.

The Hamiltonians are simulatable. Given a state |y〉 we
can first apply the inverse of the first j gates of C′, then if
we are in state |x, 0〉 apply a phase shift e−iδ, finally apply

the first j gates of C′. This implements e−iδHx(j).

The Adiabatic Condition is Satisfied. We have dH
ds
(s0) =

limζ→0
H(s0+ζ)−H(s0)

ζ
. We ignore the finitely many points
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s = j
M′ where j is an integer in [0,M ′]. For all other

points s, when ζ goes to 0 both H(s0 + ζ) and H(s0) be-
long to the same interval. Say they belong to the j’th
interval, s0 =

j+η
M′ , 0 < η < 1. Then, H(s0) = (1 −

η)Hx(j) + ηHx(j + 1) and H(s0 + ζ) = H( j+η+M′ζ
M′ ) =

(1 − η −M ′ζ)Hx(j) + (η +M ′ζ)Hx(j + 1). It follows that
H(s0+ζ)−H(s0) =M ′ζHx(j+1)−M ′ζHx(j) and

dH
ds
(s0) =

M ′ ·[Hx(j+1)−Hx(j)]. We conclude that || dHds || ≤ 2M ′ and

to satisfy Equation (7) we just need to pick T = O(M
′

ε
).

4. QSAMPLING AND MARKOV CHAINS

4.1 Markov chain Background
We consider Markov chains with states indexed by n bit
strings. IfM is an ergodic (i.e. connected, aperiodic) Markov
chain, characterized with the matrixM operating on proba-
bility distributions over the state space Ω, and p is an initial
probability distribution, then limt �−→∞ pM t = π. The lim-
iting distribution π is independent of p.
A Markov chain M has eigenvalues between −1 and 1.

π corresponds to eigenvalue 1. It is convenient to assume
that all eigenvalues are non negative (by adding self loops
which slow the chain by a factor of 2.) A Markov chain is
rapidly mixing if starting from any initial distribution, the
distribution after poly(n) time steps is within ε variation
distance from π. [5] shows that a Markov chain is rapidly
mixing iff 1−λ2 ≥ 1/poly(n), where λ2 is the second largest
eigenvalue. 1− λ2 is called the second eigenvalue gap.
A Markov chain is reversible if M [i, j] · πi = M [j, i] · πj .
A symmetric Markov chain M is reversible. Also, for an
ergodic, reversible Markov chain M πi > 0 for all i.
In approximate counting algorithms one is interested in
sequences of rapidly mixing Markov chains, where subse-
quent Markov chains have close limiting distributions. For
more background regarding Markov chains, see [34]. For
more background regarding approximate counting see [29].

4.2 Markov chains and Hamiltonians
For a reversible M we define HM = I −Diag(

√
πi) · M ·

Diag( 1√
πj
). A direct calculation shows that HM is sym-

metric iff M is reversible. We call HM the Hamiltonian
corresponding to M . The properties of HM and M are very
much related, by the following claim (The proof is straight
forward and omitted here):

Claim 7. If M is a reversible Markov chain, we have:

• HM is a Hamiltonian with ||HM || ≤ 1.
• The spectral gap of HM equals the second eigenvalue
gap of M .

• If π is the limiting distribution of M , then the ground
state of HM is α(HM ) = |π〉 def

=
P

i

p
π(i) |i〉.

This claim gives a direct connection between Hamilto-
nians, spectral gaps and groundstates on one hand, and
rapidly mixing reversible Markov chains and limiting dis-
tribution on the other hand.

4.3 Simulating HM

Not every Hamiltonian corresponding to a reversible Markov
chain can be easily simulated. However, we will shortly see

that the Hamiltonian corresponding to a symmetric Markov
chain is simulatable. For general reversible Markov chains
we need some more restrictions. We define:

Definition 7. A reversible Markov chain is strongly sam-
plable if it is row computable, and, Given i, j ∈ Ω, there is
an efficient way to approximate πi

πj
.

Row computability holds in most interesting cases but the
second requirement is quite restrictive. We note that if we
could relax it, the techniques in this section could have been
used to give a quantum algorithm for graph isomorphism.
Still, we note that the second requirement holds in many
interesting cases such as all Metropolis algorithms (see [24]).
It also trivially holds for symmetric M , where the limiting
distribution is uniform. We can now prove corollary 1:

Proof. (of corollary 1) Since HM [i, j] =
q

πi
πj

M [i, j] we

see that ifM is strongly samplable thenHM is row-computable.
HM has bounded norm and so the sparse Hamiltonian lemma
applies.

4.4 From Markov chains to QSampling
We are interested in strongly samplable rapidly mixing
Markov chains, so that the Hamiltonians are simulatable
and have non negligible spectral gaps by claim 7. To adapt
this setting to adiabatic algorithms, and to the setting of the
jagged adiabatic path lemma in particular, we now consider
sequences of Markov chains, and define:

Definition 8. (Slowly Varying Markov Chains). Let
{Mt}Tt=1 be a sequence of Markov chains on Ω, |Ω| = N =
2n. Let πt be the limiting distribution of Mt. We say the
sequence is slowly varying if for all c > 0, for all large enough
n, for all 1 ≤ t ≤ T ‖πt − πt+1‖ ≤ 1− 1/nc.

We prove that we can use a sequence of slowly varying
rapidly mixing Markov chains to Qsample from the limiting
distribution of the final Markov chain. This is theorem 3,
which we can now state precisely.

Theorem 3: Let {Mt}Tt=1 be a slowly varying sequence of
strongly samplable Markov chains which are all rapidly mix-
ing, and let πt be their corresponding limiting distributions.
Then if there is an efficient Qsampler for |π0〉, then there is
an efficient Qsampler for |πT 〉.

Proof. We already saw the Hamiltonians HMt are sim-
ulatable and have bounded norm. Also, as the Markov
chains in the sequence are rapidly mixing, they have large
spectral gaps, and therefore so do the Hamiltonians HMt .
To complete the proof we show that the inner product be-
tween the groundstates of subsequent Hamiltonians is non
negligible, and then the theorem follows from the jagged
path lemma. Indeed, 〈α(HMt)|α(HMt+1)〉 = 〈πt|πt+1〉 =P

i

p
πt(i)πt+1(i) ≥ 1 − ‖πt − πt+1‖ and therefore is non-

negligible.

4.5 Qsampling from Perfect Matchings
We illustrate our technique with the example of how to
Qsample from all perfect matchings in a given bipartite
graph G. In this subsection we heavily rely on the work of
Sinclair, Jerrum and Vigoda [28] who recently showed how
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to efficiently approximate a permanent of any matrix with
non negative entries, using a sequence of Markov chains on
the set of Matchings of a bipartite graph. This work is far
too involved to explain here fully, and we refer the reader
to [28] for more details. In a nutshell, the idea in [28] is to
apply a Metropolis random walk on the set of perfect and
near perfect matchings (i.e. perfect matchings minus one
edge) of the complete bipartite graph. Weights are assigned
to the edges such that edges that do not participate in the
input graph G are slowly decreasing until the probability
they appear in the final distribution practically vanishes.
The weights of the edges are updated using data that is col-
lected from running the Markov chain with the previous set
of weights, in an adaptive way. The final Markov chain with
the final parameters converges to a probability distribution
which is essentially concentrated on the perfect and near
perfect matchings of the input graph, where the probability
of the perfect matchings is 1/n times that of the near perfect
matching. Hence, if we can Qsample from the final limiting
distribution, we can project on the perfect matchings with
polynomial success probability
It remains to check that we can apply theorem 3. It is
easy to check that the Markov chains being used in [28]
are all strongly samplable, since they are Metropolis chains.
Moreover, the sequence of Markov chains is slowly vary-
ing. It remains to see that we can quantum sample from
the limiting distribution of the initial chain that is used in
[28]. This limiting distribution is a distribution over all per-
fect and near perfect matchings in the complete bipartite
graph, where the weight of each near perfect matching is n
times bigger than that of a perfect matching, where n is the
number of nodes of G. It is a simple exercise in quantum
computation to Qsample from this distribution efficiently.
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