1 Code Concatenation

See Chapter 9.1 of [1].

1.1 Concatenating RS with Hadamard

Consider a RS code $\text{RS} : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$ for $n \leq q$ for the outer code C_{out}, and a Hadamard code $\text{Had} : \{0,1\}^{k \log q} \rightarrow \{0,1\}^q$ for the inner code C_{in}. This gives $\text{RS} \circ \text{Had} : \{0,1\}^{k \log q} \rightarrow \{0,1\}^{nq}$ such that for every $x \in \{0,1\}^{k \log q}$:

$$(\text{RS} \circ \text{Had})(x) = (\text{Had}(\text{RS}(x)_1), \ldots, \text{Had}(\text{RS}(x)_n)).$$

By previous arguments, the code is linear, has relative rate $\frac{k \log q}{nq}$ and also:

Claim 1. Let $\delta_1 = 1 - \frac{k}{n}$ be the relative distance of RS and $\delta_2 = \frac{1}{2}$ be the relative distance of Had. Then, $\text{RS} \circ \text{Had}$ is a code of relative distance $\delta_1 \delta_2 = \frac{1}{2} - \frac{k}{2n}$.

1.2 Concatenating Hermitian with Hadamard

In an earlier lecture, we took $p = q^2$ and constructed an

$$\left[n = p\sqrt{p}, k, n - \sqrt{2k(\sqrt{p} + 1)}\right]_p$$

code for $k \leq \frac{p}{2}$. Concatenating it with the Hadamard code $\text{Had} : \{0,1\}^{k \log p} \rightarrow \{0,1\}^p$, we get an

$$\left[p^2\sqrt{p}, k \log p, \frac{p}{2} \left(p\sqrt{p} - \sqrt{2k(\sqrt{p} + 1)}\right)\right]_2$$

code. Its relative distance is

$$\frac{\frac{p}{2} \left(p\sqrt{p} - \sqrt{2k(\sqrt{p} + 1)}\right)}{p^2\sqrt{p}} \approx 1 - \frac{\sqrt{k}}{\sqrt{2p}},$$

which is better than $\text{RS} \circ \text{Had}$.

Let’s compare the length of the concatenated codes N as a function of their dimension K and their bias, which is $\varepsilon = \frac{1}{2} - \frac{d}{n}$. For $\text{RS} \circ \text{Had}$, it is

$$N = O \left(\left(\frac{K}{\varepsilon \log q}\right)^2\right).$$
By taking the Hermitian code instead of RS, we get
\[
N = O \left(\left(\frac{K}{\epsilon^2 \log p} \right)^{5/4} \right).
\]
A simple manipulation allows us to lose the log \(q \) and log \(p \) factors. Towards the end of the course we will re-visit the relation \(N(K, \varepsilon) \) in depth.

2 Justensen code

We now show that by using different concatenation in each coordinate we can get an explicit binary code of constant relative rate and constant relative distance – an asymptotically good code. See the separate handout, and also Chapter 9.3 of [1].

3 Decoding concatenated codes

For the naive decoding and the GMD algorithm, see Chapter 11 of [1].

References