General instructions:

1. The deadline for the exam is 17/02/19.
2. Submit your (typed) solution by mail to amnon@tau.ac.il.
3. Work must be done alone.
4. If you had to use an electronic source, state it explicitly within the relevant question.
1 \textit{k-wise independence (15 points)}

Our goal in this question is to prove:

\textbf{Claim 1.} \textit{Let }$X \subseteq \{0,1\}^n$\textit{ be a }k\textit{-wise independent distribution over }$\{0,1\}^n$, \textit{then }$|X| \geq \Omega \left(\frac{n^{k/2}}{k} \right)$

1. Give an explicit construction that given a prime power n and $k \leq n$ outputs an $n \times k$ matrix over \mathbb{F}_n such that any $k \times k$ minor is invertible over \mathbb{F}_n.

2. Give an explicit construction of a pairwise independent distribution D over \mathbb{F}_2^n with $|D| = n$.

3. Prove that $D \subseteq \{0,1\}^n$ is a k-wise independent distribution if and only if $\hat{D}(S) = 0$ for every S with $0 < |S| \leq k$.

4. Let $d = \frac{k}{2}$ and denote $t = \sum_{i=0}^{d} \binom{n}{i}$. Let $X \subseteq \{0,1\}^n$ with $|X| < t$. Show that there is a function $f : \{0,1\}^n \to \mathbb{R}$ which satisfies:

 \begin{itemize}
 \item $f(x) = 0$ for every $x \in X$.
 \item f is not identically zero.
 \item $\hat{f}(S) = 0$ for every S with $|S| > d$.
 \end{itemize}

5. Conclude that for any constant k, any k-wise independent distribution over $\{0,1\}^n$ has support size at least $\Omega(n^{k/2})$.

2 \textit{(k, }ε\textit{-bias (15 points)}

In class we talked about k-wise independence and ε-bias. It is known that:

\begin{itemize}
 \item For $n = 2^t$ and $k \leq n$ there exists an $n \times \frac{\log n}{2} k$ matrix over \mathbb{F}_2 such that any k rows are independent over \mathbb{F}_2.
 \item There exist an ε-biased distributions $D \subseteq \{0,1\}^m$ with support size $O\left(\frac{m}{\varepsilon^2} \right)$.
\end{itemize}

\textbf{Definition 2.} A distribution $X \subseteq \{0,1\}^n$ is k-wise ε-biased, if for every $t \leq k$ and $I = \{i_1, \ldots, i_t\} \subseteq [n]$ the random variable $X_{i_1} \circ \cdots \circ X_{i_t}$ is ε-biased.

Construct a k-wise ε-biased distribution $X \subseteq \{0,1\}^n$ using $\log \log n + \log k + 2 \log \frac{1}{\varepsilon} + O(1)$ bits of randomness.
3 Expansion and Codes (25 points)

For a D-regular undirected graph $G = (V, E)$ over N vertices:

- $\lambda(G)$ is its second largest eigenvalue in absolute value.
- The vertex expansion of a set $A \subseteq V$ is $e(A) \overset{\text{def}}{=} \frac{|\Gamma(A)|}{|A|}$ where $\Gamma(A) = \{ w \in V : \exists v \in A : (v, w) \in E \}$.

For a subset $A \subseteq V$ the density of A is $\rho(A) \overset{\text{def}}{=} \frac{|A|}{|V|}$. For a family $G = \{G_n\}_{n \in \mathbb{N}}$ where G_n is a D-regular graph over n vertices, we say G is (α, c)-expanding if for all n large enough, and all sets A of density at most α, $e(A) \geq c$.

1. Prove that for every $G = (V, E)$ and $A \subseteq V$,
 $$e(A) \geq \frac{1}{\rho(A) + (1 - \rho(A))\lambda(G)^2}.$$

2. Let $G = \{G_n\}_{n \in \mathbb{N}}$ be a family of D-regular Ramanujan graphs. Show that there exists some constant $\alpha > 0$ such that G is $(\alpha, D/4)$ expanding.

We remark that, in fact, in Ramanujan graphs the true expansion approaches (with n) at least $D/2$, and this is tight in the sense that there are Ramanujan graphs with expansion at most $D/2$.

3. Prove that for a fixed D, a random $G = \{G_n\}$ of a family of D-regular directed graphs, w.h.p., there exists some constant $\alpha > 0$ such that G is $(\alpha, D - 10)$ expanding. (A similar phenomenon is true for undirected graphs, but we need first to define the model of a random D-regular undirected graph).

4. Prove that you can never guarantee more than $D - 1$ expansion.

Next, we consider expansion in unbalanced bi-partite graphs with n vertices on the left and βn on the right for $0 < \beta < 1$ (thus, in a sense, the graph is condensing). We look at a family $G = \{G_n\}_{n \in \mathbb{N}}$, where $G_n = (V_n, W_n, E_n)$ with left degree D, $|V_n| = n$ and $|W_n| = \beta n$. We say G is (α, c)-expanding if for all n large enough, and all sets $A \subseteq V$ of density at most α, $e(A) \geq c$.

5. Prove that for a fixed β and D a random $G = \{G_n\}_{n \in \mathbb{N}}$ with regular left-degree D is $(\alpha, D - 10)$ expanding, for some constant $0 < \alpha < 1$.

We remark that there are explicit constructions of such graphs with $(\alpha, \frac{2D}{3})$ expansion.

Definition 3. Let $G = (V, W, E)$ be a left D-regular undirected graph. The code $C(G) \subseteq \{0, 1\}^{|V|}$ is defined as follows:

$$C(G) = \left\{ x \in \{0, 1\}^{|V|} : \forall w \in W : \sum_{v : v \in \Gamma(w)} x_v = 0 \right\}$$

Where addition is done in \mathbb{F}_2.

6. Show that $C(G)$ is a linear code with rate at least $(1 - \beta)n$.

7. Prove that if G is (α, c)-expanding for $c > D/2$ then $C(G)$ is asymptotically good. Specifically, prove that the distance of $C(G)$ is at least αn.

3
4 Universal traversal sequences (20 points)

Definition 4. Let F be a family of D-regular labelled graphs. We say the string $\sigma = (\sigma_1, \ldots, \sigma_T) \in [D]^T$ is a universal traversal sequence (UTS) for F if for every graph G in F and every vertex v of G, the walk σ starting at v will visit all the vertices of the graph.

As usual, let $G = (V, E)$ a D-regular, connected, undirected, non-bipartite graph over n vertices, A_G the normalized adjacency matrix of G, $\lambda_1 > \lambda_2 > \cdots > \lambda_n$ the spectrum of A_G, and $\bar{\lambda} = \max \{ -\lambda_n, \lambda_2 \}$.

Fact 5. $\bar{\lambda} \leq 1 - \frac{1}{2dn^3}$.

1. Let G be the family of all D-regular, connected, undirected, non-bipartite graphs over n where D is some constant. Show that there is a polynomial $p(n)$ such that for any $G = (V, E) \in G$ and pair of vertices $s, t \in V$, the probability that a random walk of length $p(n)$ from s does not reach t is at most $2^{-n^{10}}$.

2. Prove that there exists a UTS for G of length $\text{poly}(n)$

5 Eps-bias amplification (25 points)

In this question we construct an ε-biased distribution using some base ε_0-biased distribution and a family of expander graphs.

1. Let $D \subseteq \{0, 1\}^n$ be an ε-biased distribution (i.e. - D is flat over its support and has ε-bias) and let $G = (V, E)$ be a d-regular λ-expander where $|V| = |D|$ and we identify the vertices of G with the elements in D.

 We now define a new distribution D' by sampling an ordered edge in G and outputting the sum of its vertices: $D' = \{x_i + x_j \mid (x_i, x_j) \in E\}$.

 Prove that D' is at most $(\lambda + \varepsilon^2)$-biased. What is the support size of D'?

2. Suppose X_0 is ε_0-biased over $\{0, 1\}^k$ with support size D_0, and you have $[N, D, \lambda]$ expanders with $\lambda = \frac{2}{\sqrt{D}}$ for any N, D you wish.

 Prove that by repeating this process i times, you get an $\varepsilon_i = \frac{1}{2} (2\varepsilon_0)^{2^i}$-biased distribution over $\{0, 1\}^k$ with support size $\prod_{j=0}^{i} D_j$ where for any $1 \leq j \leq i$: $D_j = \frac{64}{(2\varepsilon_0)^{2^{j+2}}}$.

3. Use Justesen code and the above recursion to given an ε-biased distribution over $\{0, 1\}^k$ with support size $\tilde{O}(\frac{k}{\varepsilon^2})$, where the $\tilde{}$ suppresses multiplicative logarithmic terms.

 Good luck!!!