1 Universal Traversal Sequence

1.1 Reminder

In the previous lecture we’ve seen that $USTCON \in L$. Shortly, given an undirected graph G of degree D and two vertices s and t, we’ve used a known explicit construction of degree d expander’s family $\{H_i\}_i$ to define $G_0 = G$ and

$$G_i = G_{i-1} \circledast H_{i-1},$$

for every $i \leq m_0 = O(\log n)$. Then, for $i > m_0$, we defined the following family of expanders

$$H'_i = (H_{m_0 - 1 + 2^{i-m_0}})^{2^{i-m_0}},$$

and the graphs

$$G_i = G_{i-1} \circledast H'_{i-1}.$$

Finally, we looked at G_m for $m = m_0 + \log \log n + O(1)$ and claimed that the connected components of G and G_m are identical, and also that if s is connected to t in G then s is a neighbor of t in G_m. Finally, we argued that we can iterate over all neighbors of s in G_m in logarithmic space.

Note that for every vertex v in G_m, every edge-label of v is of the form

$$(\sigma, i_0, \ldots, i_{m_0}, i_{m_0+1}, \ldots, i_m),$$

where $\sigma \in [D], i_0, \ldots, i_{m_0} \in [d]$ and so on. We’ve also seen that computing

$$\text{Rot}_{G_m}(v, (\sigma, i_0, \ldots, i_{m_0}, i_{m_0+1}, \ldots, i_m))$$

can be though of as an in-order walk on a trinary-tree, where each node represents a computation, and the computations on the leaves correspond to a sequence of walking instructions on G that takes us from s to t.

1.2 Universal Traversal Sequence

Definition 1. A labelled graph is locally-invertible if

$$\text{Rot}_G(v, i) = (v[i], \phi(i)),$$

for some permutation ϕ.

Observation 2. If G is ϕ-locally-invertible then the generated sequence of instructions that takes us from s to t does not depend on s.

The following claims follow by similar proofs to those we saw in the last lecture:

\[\text{Rot} \text{ ends as edge-labels in } G \text{H as before, and note that now it corresponds to picking an edge of } G \]

Using the above definition of the rotation map for digraphs, we can define \(\text{Rot} \)

\[\text{Claim 6. Let } F \text{ be the family of undirected } D\text{-regular labelled graphs which are } \phi\text{-locally invertible.} \]

\[\text{Then there exists a logspace construction of UTS for } F. \]

Proof. From the observation we see that for every graph \(G \in F \), every vertex \(v \), and every edge-label \(i = (\sigma, i_0, \ldots, i_m, i_{m+1}, \ldots, i_n) \), the sequence of instructions that are generated by computing \(\text{Rot}_{G_m}(v, i) \) is independent of \(v \). Hence, we can simply write \(\text{Rot}_{G_m}(i) \). Moreover, note that the output of \(\text{Rot}_{G_m}(i) \) is some edge-label \(\tilde{i}' \), and \(\text{Rot}_{G_m}^m(\tilde{i}')) = \tilde{i} \).

This implies the following algorithm: iterate over all possible edge-labels \(\tilde{i} \), and for each one compute \(\text{Rot}_{G_m}^m(\tilde{i}) \), and while computing, print to the output tape the corresponding sequence of instructions generated by the computation of \(\text{Rot}_{G_m} \). After computing \(\text{Rot}_{G_m}^m(\tilde{i}) \) the work-tape has changed to some other edge-label \(\tilde{i}' \), for which we compute \(\text{Rot}_{G_m}^m(\tilde{i}') \) and print to the output tape the corresponding sequence of instructions. Now the work-tape is once again \(\tilde{i} \) and we move to the next edge-label.

Note that the above can be implemented in logarithmic space, and that if the sequence of instructions that corresponds to \(\tilde{i} \) goes from \(v \) to \(u \), then the sequence of instructions that corresponds to \(\tilde{i}' \) goes from \(u \) to \(v \). This implies that the whole sequence, when starting at some vertex \(v \) of \(G \), repeatedly goes (on \(G! \)) from \(v \) to some neighbor of \(v \) in \(G_m \), and then back to \(v \). Since every vertex in the connected component of \(v \) in \(G \) is a neighbor of \(v \) in \(G_m \) it follows that the whole sequence visits every vertex in the connected component of \(v \), as required.

\[\square \]

1.3 Generalization

In the following generalization we will look at \(D\)-regular digraphs which are **consistently labelled**.

Definition 5. A labelled \(D\)-regular graph is **consistently labelled** if for every \(v \in V \) and every \(i \in [D] \) there exists exactly one neighbor \(w \) s.t. \(w[i] = v \).

Claim 6. Let \(G \) be a \(D\)-regular digraph. Then

1. \(||G|| \leq 1 \).
2. The all 1’s vector is an eigenvector with eigenvalue 1.
3. Let \(V^± \) be the orthogonal subspace to the span of the all 1’s vector. Then \(V^± \) is invariant under \(G \).

For such a \(D\)-regular digraph we define the rotation map \(\text{Rot} : V \times [D] \to V \times [D] \) by \(\text{Rot}(v, i) = (v[i], i) \). Note that if \(G \) is consistently labelled then \(\text{Rot}_G \) is a permutation.

Using the above definition of the rotation map for digraphs, we can define \(G \otimes H \) in the same way as before, and note that now it corresponds to picking and edge of \(H \) at random and using both ends as edge-labels in \(G \). Formally, for \(v \in V, \sigma \in [D] \) and \(i \in [d] \) we have

\[\text{Rot}_{G \otimes H}(v, \sigma, i) = (v'' \sigma, \sigma, i) \]

where \(\text{Rot}_G(v, \sigma) = (v', \sigma), \text{Rot}_H(\sigma, i) = (\sigma', i) \) and \(\text{Rot}_G(v', \sigma') = (v'', \sigma') \).

The following claims follow by similar proofs to those we saw in the last lecture:
Claim 7. If G is a connected D-regular digraph then $\lambda(G) \geq 1/n^4$.

Claim 8. If G is a connected D-regular digraph then $\lambda(G_m) \geq 1 - 1/10n$.

Corollary 9. If s is connected to t in G then s is a neighbor of t in G_m.

2 Universal Exploration Sequence

Let G be a D-regular undirected graph. We’ve seen that one way of walking on the graph is keeping in memory only the current vertex v where we stand at, and given an instruction $\sigma \in [D]$ simply walk to the σ neighbor of v.

Another way of walking on the graph is keeping in memory, in addition to the vertex v, also v’s label of the last edge (u,v) that we’ve just traversed. If this label is τ and we are given an instruction $\sigma \in [D]$, then we simply traverse the edge whose label is $\tau + \sigma \mod D$. This kind of walk is called exploration sequence.

Definition 10. Let F be a family of D-regular undirected labelled graphs. We say that $\sigma = (\sigma_1,\ldots,\sigma_T) \in [D]^T$ is a universal exploration sequence (UES) for F if for every $G \in F$ and starting edge e, the walk obtained by σ visits all the edges of the graph.

Claim 11. The exists a logspace construction of UES.

We will prove the above claim in HW. One way to prove it is using the construction of UTS for regular locally-invertible graphs that we’ve seen. Another way is that given an undirected D-regular graph G, we can construct a graph $L(G)$ whose vertices are the (directed) edges (i,j) (i.e. for every undirected edge $\{i,j\}$ in G there are two vertices (i,j) and (j,i)), and a vertex (i,j) is connected to (j,k) iff $\{i,j\}$ and $\{j,k\}$ are edges of G. Note that every labelling of the neighbors in G induces a labelling on the neighbors in $L(G)$, and we claim that $L(G)$ is consistently labelled.

3 Some Words on Reingold’s Proof that $USTCON \in L$

Now we will shortly describe Reingold’s proof that $USTCON \in L$ which we will also see in HW. Let G be a (wlog) D^2-regular undirected graph with self-loops on every vertex. Let H be a fixed $[D^4,D,1/4]$-graph. We define $G_0 = G$ and

$$G_{t+1} = G_t^2 @ H.$$

Note that squaring improves the gap but also increases the degree, while the zig-zag product reduces the degree back to D^2 but also slightly decreases the gap (and also, as a side effect, increases the number of vertices). Since the gap of G_0 is non-negligible, it can be shown that for $m = O(\log n)$ we have $\text{gap}(G_m) \geq 1/18$. Note that G_m is a constant degree graph with polynomial-number of vertices, and that every node s_m in the cloud that corresponds to s in G_m is connected to any node t_m in the cloud that corresponds to t in G_m iff s is connected to t in G. Hence all that remains is to try all paths of length $O(\log n)$ in G_m from some s_m to some t_m, and we can show that this can be implemented in logarithmic space.
4 Extractors

Definition 12. Let X be a distribution on $\{0,1\}^n$. We say that X is a k-source if for every $a \in \text{Supp}(X)$, $\Pr[X = a] \leq 2^{-k}$. Equivalently, X is a k-source if $H_\infty(X) \geq k$ where $H_\infty(X) := \log \frac{1}{\max_a \Pr[X = a]}$.

Some examples:

1. If X is the uniform distribution on $\{0,1\}^n$ then X is an n-source, and we have $H_\infty(X) = n$.
2. If X is 0 with probability $1/2$ and otherwise uniform on $\{0,1\}^n \setminus \{0^n\}$ then $H_\infty(X) = 1$.

Claim 13. Let $f : \{0,1\}^n \to \{0,1\}^s$ and let X be the uniform distribution over $\{0,1\}^n$. Then for every $\epsilon > 0$,

$$\Pr_{X}[H_\infty(X|f(X)) \leq n - s - \log(1/\epsilon)] \leq \epsilon.$$

Intuitively, the above claim says that if f compresses n bits to s bits, then with high probability knowing $f(X)$ reduces only about s bits of entropy from X.

We would like to have a function $Ext : \{0,1\}^n \to \{0,1\}^m$ s.t. given a k-source X, $Ext(X)$ will be close to U_m (we can think of Ext as a “hash function”). Note that such a function does not exist: Assume that we only want one random bit (i.e. $m = 1$) from an $(n - 1)$-source, and let $Ext : \{0,1\}^n \to \{0,1\}$. Assume wlog that 0 has at least 2^{n-1} preimages in Ext, and define X to be the random distribution over $Ext^{-1}(0)$. Then X is an $(n - 1)$-source, but $Ext(X) \equiv 0$.

Hence we use a weaker definition:

Definition 14. A function $Ext : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is called an (k,ϵ)-extractor if for every k-source X we have

$$|Ext(X,U_d) - U_m|_1 \leq \epsilon.$$

An intuitive way of thinking of it is that U_d chooses at random a function h from a family of “hash functions” H and applies it on X (i.e. $Ext(X,h) = h(x)$). We know that every function has a distribution X for which it fails, but for a specific distribution most of the functions in H are good.