0368-3072 – Error Correcting Codes

Sundays, 14:00-17:00 in Shenkar (physics) 104.

Grading policy:

• Exam – 50%.
• Homework – 50%.
• Bonuses for help in forum and active participation in class.

References Abbreviation Table

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Author(s)</th>
<th>Book/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R]</td>
<td>Ron M. Roth</td>
<td>Introduction to Coding Theory [link]</td>
</tr>
<tr>
<td>[HP]</td>
<td>W. Cary Huffman and Vera Pless</td>
<td>Fundamentals of Error Correcting Codes [library link]</td>
</tr>
<tr>
<td>[GRS]</td>
<td>Venkatesan Guruswami, Atri Rudra and Madhu Sudan</td>
<td>Essential Coding Theory [link]</td>
</tr>
<tr>
<td>[S]</td>
<td>Madhu Sudan</td>
<td>Essential Coding Theory lecture notes [link]</td>
</tr>
<tr>
<td>[G]</td>
<td>Venkatesan Guruswami</td>
<td>Introduction to Coding Theory lecture notes [link]</td>
</tr>
</tbody>
</table>
Extended Syllabus

Part I – The basic problem and some basic constructions

Error correction basics	Linear codes. Distance and dimension. Encoding and decoding. The generator matrix. The dual code. The parity-check matrix.	R 2
	Hamming codes (distance, dimension, encoding, decoding, perfect).	GRS 2.4
	Hadamard codes (distance, dimension, encoding, decoding).	Handout 1

| Basic codes | Number of roots of a polynomial. The Reed-Solomon (RS) code (distance, dimension, encoding, no decoding yet). The dual of a RS code. | GRS 5.1
| Basic AG codes | Reed-Muller (RM) codes. The dual of a RM code is a RM code. | S 4
| | Cyclic codes. Polynomial codes. RS is cyclic. The dual of a cyclic code is cyclic. | Handout 1
| | The Hamming code is cyclic. | R 8.1-8.2
| | Number of common roots of two polynomials. Hermitian codes (encoding only). A glimpse towards AG codes. | Handout 2

| Concatenation | RS concatenated with Hadamard (encoding only). Nested concatenation. | GRS 9.1
| | Hermitian concatenated with Hadamard (encoding only). | Handout 3
| | Naive decoding. | GRS 11.1
| | Improved decoding: The GMD (generalized minimum distance) decoding algorithm. | GRS 11.3
| | The Justensen code (encoding and decoding). | GRS 9.3

Part II – Decoding RS and List decoding
| Non-unique decoding | Stochastic noise. | GRS 5
| | List decoding. | GRS 7.2
| | The Johnson’s bound. | GRS 7.3
| Explicit List decoding | Welch-Berlekamp’s algorithm. Error locating polynomials. | GRS 13.1
| | List decoding RS codes. | GRS 13.2
| | Parvaresh-Vardy codes. | GRS 14
| Part III – What is possible and what is not. What is explicit and what is not | Rate vs. Distance Lower Bounds
| The Singleton bound. | G 4
| The Hamming bound. | HP 1.12, 2.10.3
| The Plotkin bound. | G 4
| The Elias-Bassalygo bound. | GRS 8.1
| The Linear Programming (LP) bounds (just stating the result). | HP, 2.10.5
| Rate vs. Distance Upper Bounds | The Gilbert-Varshamov (non-explicit) bound. | GRS 4.2
| RS, Hadamard, Hamming, AG codes. | G 2
| Rate vs. List-Decoding distance | Non-explicit and lower bound. | GRS 7.4
| Explicit bounds for: RS, PV, Folded RS, Binary codes. |
| Part IV – Codes and Graphs | Expander Codes
| Expanders: Graphs that sparsify the complete graph. | GRS 10
| The Sipser-Spielman LDPC codes. |
Good codes with distance close to half	Bias of a distribution (w.r.t. linear tests). The Fourier transform.
	Error correcting codes and small-bias sets.
	A code with distance close to half using random walks on expanders (encoding only).