Last lecture we proved that \(\text{PH} \subseteq \text{BPP}^{\oplus P} \). Here we will prove that:

Lemma 1. \(\text{PP}^{\oplus P} \subseteq \text{P}^{\#P} \).

As \(\text{BPP} \subseteq \text{PP} \), both lemmas imply Toda’s theorem, that \(\text{PH} \subseteq \text{P}^{\#P} \).

1 The class \(\text{GapP} \)

Definition 2. The class \(\text{GapP} \) is the class of functions \(f \) such that for some NP machine \(M \), \(f(x) \) is the number of accepting paths minus the number of rejecting paths of \(M \) on \(x \).

\(\text{GapP} \) functions are closed under under exponential-size sums and polynomial-size products (we will see this in the exercise). Further:

Claim 3. \(\#P \subseteq \text{GapP} \).

Proof. Given \(f \in \#P \) corresponding to an NP machine \(M \), let \(N \) be the NP machine that on input \(x \): Simulates \(M(x) \). If it accepted, accept and otherwise branch to an accepting state and a rejecting one.

Let \(a \) and \(r \) be the number of accepting and rejecting paths of \(M \) on \(x \). Thus, the number of accepting paths of \(N \) is \(a + r \) and the number of rejecting paths of \(N \) is \(r \). Thus, the \(\text{GapP} \) function corresponds to \(N \) is \((a + r) - r = a \), as desired.

Claim 4. \(\text{FP}^{\text{GapP}} = \text{FP}^{\#P} \).

Proof. (Sketch). The only direction left to prove is \(\text{FP}^{\text{GapP}} \subseteq \text{FP}^{\#P} \). Let \(L \in \text{FP}^{\text{GapP}} \) and assume it makes an oracle call to a function \(f \in \text{GapP} \). We will see in the exercise that every \(\text{GapP} \) function is a difference between a \(\#P \) function and an FP function. Thus, we can compute its output with an oracle to \(\#P \) and an FP computation.

We have the following \(\text{GapP} \) characterization of \(\oplus P \):

Claim 5. A language \(L \) is in \(\oplus P \) if and only if there is a \(\text{GapP} \) function \(f \) such that:

- If \(x \in L \) then \(f(x) \equiv 1 \pmod{2} \).
- If \(x \notin L \) then \(f(x) \equiv 0 \pmod{2} \).

Proof. The left-to-right direction follows from Claim 3. For the other direction, consider such a \(\text{GapP} \) function with a corresponding NP machine \(M \). Let \(N \) be the following NP machine: On input \(x \), it branches twice, simulating \(M(x) \) on one branch and \(\overline{M}(x) \) on the other. Clearly,

\[
\#\text{acc}_N(x) = \text{acc}_M(x) + \text{rej}_M(x) = (\#\text{acc}_M(x) - \#\text{rej}_M(x)) + 2 \cdot \#\text{rej}_M(x),
\]
so if \(x \in L \) then \(\#\text{acc}_M(x) - \#\text{rej}_M(x) \) is odd and \(\text{acc}_N(x) \) is odd as well, and if \(x \notin L \) then \(\#\text{acc}_M(x) - \#\text{rej}_M(x) \) is even and \(\text{acc}_N(x) \) is even as well. Thus, \(L \in \oplus P \) due to the NP machine \(N \).

2 Characterizing PP\(^{\oplus P}\)

We define PP\(^{A}\) using P\(^A\) predicates.

Claim 6. A language \(L \) is in PP\(^{A}\) if and only if there is a language \(B \in P^A \) and a polynomial \(q \) such that:

- If \(x \in L \) then
 \[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : (x, y) \in B \right\} \right| \geq \left| \left\{ y \in \{0, 1\}^{q(|x|)} : (x, y) \notin B \right\} \right| \]
- If \(x \notin L \) then
 \[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : (x, y) \in B \right\} \right| < \left| \left\{ y \in \{0, 1\}^{q(|x|)} : (x, y) \notin B \right\} \right| \]

Proof. The left-to-right direction follows immediately from the definition of PP. For the other direction, consider such a language \(B \) with a corresponding P\(^A\) machine \(M(x, y) \). Let \(N \) be the NP\(^A\) machine that on input \(x \), guesses \(y \in \{0, 1\}^{q(|x|)} \), simulates \(M(x, y) \) and answers accordingly. The correctness easily follows.

Combining the above two claims, and the fact that \(P^{\oplus P} = \oplus P \) implied by what we did last lecture, we have:

Lemma 7. A language \(L \) is in PP\(^{\oplus P}\) if and only if there is a GapP function \(f \) and a polynomial \(q \) such that:

- If \(x \in L \) then
 \[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 1 \,(\mod\,2) \right\} \right| \geq \left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 0 \,(\mod\,2) \right\} \right| \]
- If \(x \notin L \) then
 \[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 1 \,(\mod\,2) \right\} \right| < \left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 0 \,(\mod\,2) \right\} \right| \]

3 Proving PP\(^{\oplus P}\) \(\subseteq\) P\(^\# P\)

Our plan is to give a FP\(^{\text{GapP}}\) algorithm to compute
\[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 1 \,(\mod\,2) \right\} \right| \]
and
\[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 0 \,(\mod\,2) \right\} \right|. \]

With that algorithm, we can prove PP\(^{\oplus P}\) \(\subseteq\) P\(^\# P\).
Proof. Let $L \in \text{PP}^{\oplus \text{P}}$. By Lemma 7, there exists a GapP function f and a polynomial q such that:

- If $x \in L$ then
 \[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 1 \, (\text{mod } 2) \right\} \right| \geq \left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 0 \, (\text{mod } 2) \right\} \right| \]

- If $x \not\in L$ then
 \[\left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 1 \, (\text{mod } 2) \right\} \right| < \left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 0 \, (\text{mod } 2) \right\} \right| \]

We compute in FP^{GapP} the above two quantities, and decide accordingly. As $\text{FP}^{\text{GapP}} = \text{FP}^{\#P}$, $L \in \text{P}^{\#P}$.

So, fix a GapP function $f(x, y)$. Consider the polynomial $g(m) = 3m^2 - 2m^3$. One can verify that indeed:

Lemma 8. For all m,

1. If $m \equiv 0 \, (\text{mod } 2^j)$ then $g(m) \equiv 0 \, (\text{mod } 2^{2j})$.
2. If $m \equiv 1 \, (\text{mod } 2^j)$ then $g(m) \equiv 1 \, (\text{mod } 2^{2j})$.
3. If $m \equiv 0 \, (\text{mod } 2)$ then $g^{(k)}(m) \equiv 0 \, (\text{mod } 2^{2^k})$.
4. If $m \equiv 1 \, (\text{mod } 2)$ then $g^{(k)}(m) \equiv 1 \, (\text{mod } 2^{2^k})$.

Now, let $h(x, y) = g^{(1 + \log_{2} q(|x|))}(f(x, y))$. As f is a GapP function, and GapP functions are closed under exponential-size sums and polynomial-size products, $h(x, y)$ is itself a GapP function. By the above lemma,

- If $f(x, y) \equiv 1 \, (\text{mod } 2)$ then $h(x, y) \equiv 1 \, (\text{mod } 2^{q(|x|)+1})$.
- If $f(x, y) \equiv 0 \, (\text{mod } 2)$ then $h(x, y) \equiv 0 \, (\text{mod } 2^{q(|x|)+1})$.

Define $r(x)$ as

\[r(x) = \sum_{y \in \{0, 1\}^{q(|x|)}} h(x, y), \]

which is also a GapP function. We then have:

\[r(x) \mod 2^{q(|x|)+1} = \left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 1 \, (\text{mod } 2) \right\} \right| \]

and

\[2^{q(|x|)} - \left(r(x) \mod 2^{q(|x|)+1} \right) = \left| \left\{ y \in \{0, 1\}^{q(|x|)} : f(x, y) \equiv 0 \, (\text{mod } 2) \right\} \right|. \]

The above two computations can be done in FP^{GapP}, so we are done.