The goal of the next couple of lectures will be to prove Toda’s theorem [3], $\text{PH} \subseteq \text{P}^{\text{#P}}$, which we used to prove the IK theorem.

Define $\oplus \text{P}$ as the complexity class of decision problems solvable by an NP machine, where the acceptance condition is that the number of accepting computation paths is odd. An example of a $\oplus \text{P}$ problem is “given a graph, does it have an odd number of perfect matchings?”. It can be viewed as finding the least significant bit of the answer to the corresponding #P problem. In this lecture we are going to prove the following lemma, which comprises the first part of Toda’s proof.

Lemma 1. $\text{PH} \subseteq \text{BPP}^{\oplus \text{P}}$.

We will follow Fortnow’s proof [1], but we will need some preliminaries first.

1 The isolation lemma and UniqueCLIQUE

The *isolation lemma*, due to Mulmuley, Vazirani and Vazirani, gives a randomized algorithm to reduce the number of solutions to one, given such a solution exists.

Definition 2. Let X be a set of n elements, and let \mathcal{F} be a family of subsets of X. Assign a weight $w(x)$ to each element, and define the weight of a set $E \in \mathcal{F}$ as $w(E) = \sum_{x \in E} w(x)$. If $\min_{E \in \mathcal{F}} w(E)$ is achieved by a unique $E \in \mathcal{F}$, we say w is isolating for \mathcal{F}.

Lemma 3 ([2]). Let X be a set of n elements, and let \mathcal{F} be a family of subsets of X. Let $w : X \to [N]$ be a random function, each $w(x)$ is chosen independently and uniformly. Then,

$$\Pr_{w}[w \text{ is isolating for } \mathcal{F}] \geq 1 - \frac{n}{N}.$$

Proof. Draw w uniformly at random. For an element $x \in X$, set

$$\alpha(x) = \min_{E \in \mathcal{F}, x \notin E} w(E) - \min_{E \in \mathcal{F}, x \in E} w(E \setminus \{x\}).$$

Evaluation of $\alpha(x)$ does not require knowledge of $w(x)$, so we have that

$$\Pr_{w}[w(x) = \alpha(x)] = \frac{1}{N}$$

and

$$\Pr_{w}[\exists x \in X, w(x) = \alpha(x)] \leq \frac{n}{N}.$$

But if w induces two minimal sets $A, B \in \mathcal{F}$ and $x \in A \setminus B$ then

$$\min_{E \in \mathcal{F}, x \notin E} w(E) = w(B)$$

and

$$\min_{E \in \mathcal{F}, x \in E} w(E \setminus \{x\}) = w(A) - w(x),$$

so $\alpha(x) = w(B) - w(A) + w(x) = w(x)$. Thus, if w is not isolating for \mathcal{F} then $w(x) = \alpha(x)$ for some $x \in X$, and we have already seen that the last event can happen with probability at most $\frac{n}{N}$. \square
The isolation lemma gives a probabilistic reduction from CLIQUE to UniqueCLIQUE which we will now see. As the reduction from CLIQUE to SAT preserves the number of accepting witnesses, a probabilistic reduction from SAT to UniqueSAT follows. A probabilistic reduction to UniqueSAT was first given by Valiant and Vazirani [4] using another technique.

Theorem 4. There is a probabilistic polynomial-time procedure that, given a graph \(G \) and an integer \(k \), outputs \(G' \) and \(k' \) such that:

- If \(G \) has no clique of size \(k \) then \(G' \) has no clique of size \(k' \).
- If \(G \) has a clique of size \(k \) then, with a non-negligible probability, \(G' \) has exactly one clique of size \(k' \).

Proof. Given an input \(\langle G = (V, E), k \rangle \), let \(|V| = n\). The algorithm choose \(w : V \rightarrow [2^n] \) uniformly at random. By the isolation lemma, with probability at least \(\frac{1}{2} \), the clique of maximal weight will be unique (it is easy to see that the proof also works for the maximal weight).

Let \(G' \) be the following graph: For every vertex \(v \in V \), construct a clique of size \(2nk + w(v) \). For every edge \((u, v) \in E\), connect the \(u \)-clique to the \(v \)-clique in \(G' \) (every vertex to every vertex).

Next, choose a random integer \(r \in [2nk] \) and return \(\langle G', k' = 2nk^2 + r \rangle \). Now:

- If \(\langle G, k \rangle \notin \text{CLIQUE} \) then the size of the smallest clique in \(G' \) is at most \((k-1) \cdot (2nk + 2n) < 2nk^2 \) so \(\langle G', k' \rangle \notin \text{UniqueCLIQUE} \).
- If \(\langle G, k \rangle \in \text{CLIQUE} \) then with probability at least \(\frac{1}{2} \) there is a unique clique \(C \subseteq V \) of size \(k \) with a maximal \(w(C) \). Assume this is indeed the case.

The size of the clique in \(G' \) corresponding to \(C \) is \(2nk^2 + w(C) \) and note that \(2nk^2 + 1 \leq 2nk^2 + w(C) \leq 2nk^2 + 2nk \). For any other \(k \)-clique \(C' \subseteq C \), the corresponding clique in \(G' \) has weight \(2nk^2 + w(C') < 2nk^2 + w(C) \).

We already saw that a clique of size smaller than \(k \) in \(G \) corresponds to a clique of size smaller than \(2nk^2 \) in \(G' \). A \((k+1)\)-clique in \(G \) corresponds to a clique of size larger than \(2nk(k+1) + k + 1 > k' \).

It follows that for the correct \(r = w(C) \) we will have a unique clique of size \(k' \). Hence, the probability that \(\langle G, k \rangle \in \text{UniqueCLIQUE} \) is at least \(\frac{1}{2nk} \).

\[\square \]

2 Preliminary results

We first show:

Theorem 5. \(\oplus \text{P} \oplus \text{P} = \oplus \text{P} \).

Proof. Let \(L \in \oplus \text{P} \oplus \text{P} \), equipped with an accepting \(\text{NP} \) machine \(M \) making oracle calls to some \(\oplus \text{P} \)-complete language \(A \) having an accepting \(\text{NP} \) machine \(M_A \). We will show an \(\text{NP} \) machine \(N \) accepting \(L \) with no oracle calls. That is, \(x \in L \) iff the number of accepting path of \(N(x) \) is odd. \(N \) on an input \(x \) behaves as follows:
1. \(N \) guesses a computation path \(w \) of \(M \) on input \(x \), which includes possible oracle answers to the query strings appearing in \(w \).

2. If \(w \) is a rejecting path of \(M \) on \(x \) then \(N \) enters a rejecting step. Otherwise, it goes to the next step.

3. Let \(y_1, \ldots, y_m \) be all the query strings which appear in \(w \) and whose corresponding oracle answers in \(w \) are Yes and likewise let \(z_1, \ldots, z_\ell \) be all the query strings which appear in \(w \) and whose corresponding oracle answers in \(w \) are No. Then, \(N \) simulates \(M_A \) successively for each \(y_i \) and \(z_i \) in the following manner:

 (a) For each \(y_i \), it simply simulates \(M_A \). If \(M_A \) enters a rejecting state then so does \(N \). Otherwise, it proceeds to the next simulation.

 (b) For each \(z_i \), it nondeterministically selects one of the following processes:

 - \(N \) goes to the next simulation.
 - \(N \) simulates \(M_A \) on \(z_i \). If \(M_A \) enters a rejecting state, then so does \(N \). Otherwise, it goes to the next simulation.

4. \(N \) enters an accepting state.

For the correctness, we classify all possible accepting paths of \(M \) on \(x \) into two groups, one of which consists of accepting paths with the correct oracle answers to \(A \) and the remaining ones (that contain at least one inconsistent oracle call).

From the definition of \(N \) we can see that:

- Every accepting path in the first group is followed by an odd number of accepting paths in steps 3 and 4 since on the \(y \)-s we always have an odd number of accepting paths, and on the \(z \)-s we always have an odd number of accepting paths.

- Every accepting path in the second group is followed by an even number of accepting paths in steps 3 and 4. To see this, observe that if we do not err on any of the \(y \)-s (odd number of accepting paths) we must err on at least one \(z \), leading to an even number of accepting paths in the \(z \)-s, for a total of even number of accepting paths. If we do err on one of the \(y \)-s, we have an even number of accepting paths and a total of even number of accepting paths, regardless of how we act on the \(z \)-s.

Having established that, we have that if \(x \in L \) then the number of accepting paths in the first group is odd, so the number of accepting paths of \(N \) is odd as well (odd \(\times \) odd + even = odd), and similarly if \(x \notin L \) then the number of accepting paths in the first group is even (even \(\times \) odd + odd = even), so the number of accepting paths of \(N \) is even – as desired.

\[\square \]

Theorem 6. If \(\text{NP} \subseteq \text{BPP} \) then \(\text{PH} \subseteq \text{BPP} \).

Proof. As an exercise.

\[\square \]

As a corollary, we have:

Lemma 7. \(\text{NP} \subseteq \text{BPP}^{\text{NP}} \).
Proof. It is sufficient to show that CLIQUE ∈ BPP⊕P. Given an input ⟨G, k⟩, use the probabilistic algorithm from Theorem 4 to produce G’ and k’ and accept iff the NP machine for CLIQUE on input ⟨G’, k’⟩ has an odd number of accepting paths (using the ⊕P oracle).

If ⟨G, k⟩ ∉ CLIQUE then there will always be zero accepting paths and we will always reject. If ⟨G, k⟩ ∈ CLIQUE then with non-negligible probability there will be exactly one accepting path and we will accept. □

3 A proof of Toda’s first lemma

When we relativize a class like BPP⊕P to an oracle A, both the BPP and the ⊕P machines should have access to the oracle A. The BPP machine can make its queries to A via the ⊕P A oracle so we have (BPP⊕P)A = BPP(⊕P A), which we will write simply as BPP⊕P A.

We are now ready to prove that PH ⊆ BPP⊕P.

Proof. Lemma 7 relativizes, so we have

NP⊕P ⊆ BPP⊕P⊕P.

By Theorem 5,

NP⊕P ⊆ BPP⊕P.

Theorem 6 relativizes as well, so NP⊕P ⊆ BPP⊕P implies

PH⊕P ⊆ BPP⊕P.

However, PH ⊆ PH⊕P so we finally have PH ⊆ BPP⊕P and we are done. □

References

