Questions Pool
Amnon Ta-Shma and Dean Doron
January 2, 2017

General guidelines

The questions fall into several categories:

(Know).	Make sure you know how to solve. Do not submit.
(Mandatory).	Mandatory questions.
(Bonus).	Bonus questions.

HW 1 – Error-correcting codes.

Due: 20.11.2016

1. (Know). Let \(C \) be a \(q \)-ary linear error-correcting code. Prove that the minimal weight of a nonzero codeword is \(d \) if and only if the minimum Hamming distance between every two distinct codewords is at least \(d \).

2. (Mandatory). Let \(C \) be an \((n,k) \) \(q \) code. Prove that there exists a word \(w \in \mathbb{F}_q^n \) such that \(\mid B(w, (1-1/q)n) \cap C \mid \geq q^{k-o(n)} \).

3. (Mandatory). Let \(C \) be a \((n,k,d) \) \(q \) code. Prove that \(d \leq n-k+1 \).

4. (Know). Let \(C \) be a \((n,k,d) \) \(q \) code with a generating matrix \(G \). Show to decode codewords where no error occurred.

5. (Mandatory). Let \(n_1 \) be a power of 2 and \(A \) a \([n_1,k_1,d_1]\) \(n_1 \) code. Let \(B \) be a \([n_2,\log n_1, d_2]\) \(2 \) code. Suppose \(A(x) \) for \(x = x_1, \ldots, x_{k_1} \) is \(A(x) = A_1(x) \circ \ldots \circ A_{n_1}(x) \), with \(A_i(x) \in \mathbb{F}_{n_1} \).

Define \(B \circ A \) to be \((B \circ A)(x) = B(A_1(x)) \circ \ldots \circ B(A_{n_1}(x)) \). Prove that \(B \circ A \) is a linear binary code, and find its dimension and distance.

6. (Mandatory). Suppose you can efficiently decode \(A \) and \(B \) up to half the distance. Show an efficient algorithm decoding the concatenated code. How many errors can you efficiently correct?

7. (Mandatory). Prove the Johnson bound (Theorem 2 from Lecture 2) for the case of \(q = 2 \).

Guidance: Fix a word \(y \) and let \(c_1, \ldots, c_L \in B(y,e) \cap C \). Define \(c'_i = c_i - y \) and let \(S = \sum_{i<j} d(c'_i, c'_j) \). Find an upper bound and a lower bound on \(S \).
For the upper bound, consider the matrix M whose columns are the ϵ_i-s and define m_i as the number of 1-s in each row. Express S using M and the m_i-s and obtain an upper bound.

8. (Know). In the Reed-Muller code, we encoded a message $x \in \mathbb{F}_q^k$ into a multivariate polynomial $p : \mathbb{F}_q^m \to \mathbb{F}_q$. Prove the existence and uniqueness of p and explain how to find it efficiently.

9. (Know). Fix $a \in \mathbb{F}_q^m$ and consider a random curve $\Gamma : \mathbb{F}_q \to \mathbb{F}_q^m$ of degree-k that passes through a. That is, $\Gamma(t) = a + \sum_{i=1}^m z_i t^i$ where the z_i-s are chosen uniformly and independently from \mathbb{F}_q^m. Prove that the random variables $\Gamma(1), \ldots, \Gamma(q-1)$ are uniform and k-wise independent.

10. (Know). The Hadamard code Had is a $[n=2^k, k]_2$ code. For a string $z \in \{0,1\}^k$, the w-th coordinate of $\text{Had}(z) \in \{0,1\}^{2k}$ is $\langle z, w \rangle$ modulo 2, which we abbreviate as $\langle z, w \rangle$. Prove that the Hadamard code has relative distance $1/2$.

11. (Mandatory). Prove that the Hadamard code is δ-locally decodable for $\delta < 1/4$. How many queries do you have?

12. (Mandatory). Prove that $\text{Had} : \{0,1\}^k \to \{0,1\}^{2k}$ is $(\frac{1}{2} + \varepsilon, \frac{1}{4\varepsilon^2})$-list-decodable in time $\text{poly}(\frac{1}{\varepsilon})$.

Guidance: Let $n = 2^k$ and view $f \in \{0,1\}^n$ as $f : \{0,1\}^k \to \{0,1\}$. Consider choosing $z_1, \ldots, z_m \in \{0,1\}^n$ uniformly at random and given $i \in \{0,1\}^k$, outputting the majority value among $\{f(z_j) \oplus f(z_j \oplus e_i)\}_{j \in [m]}$. This algorithm works (for a suitable choice of m) when ε is high (say 0.4). Why? How can we adopt it to handle an arbitrarily small ε?

13. (Mandatory). A function $f : \{0,1\}^* \to \{0,1\}^*$ is a one-way function if f can be computed by a polynomial-time algorithm and for any probabilistic polynomial-time algorithm A and any constant c, for every large enough n, it holds that $\Pr_{x \in \{0,1\}^n, r}[A(f(x), r) \in f^{-1}(f(x))] < n^{-c}$.

Let f be a one-way function such that f is one-to-one. Prove that for every probabilistic polynomial-time algorithm A there is a negligible function $\varepsilon = \varepsilon(n)$ such that $\Pr_{x,r}[A(f(x), r) = (x, r)] \leq \frac{1}{2} + \varepsilon$.

14. (due to Kopparty) (Mandatory). Let d be an odd integer and let C be an $[n, k, d]_2$ code. Show that there exists a linear code C' that is a $[n, k-1, d+1]_2$ code.

15. (due to Guruswami) (Bonus). Let $1 \leq k \leq n$ be integers and let $p_1 < \ldots < p_n$ be n distinct primes. Denote $K = \prod_{i=1}^k p_i$ and $N = \prod_{i=1}^n p_i$. Consider the mapping $E : \Z_K \to \Z_{p_1} \times \ldots \times \Z_{p_n}$ defined by:

$$E(m) = (m \mod p_1, \ldots, m \mod p_n).$$

(a) Suppose that $m_1 \neq m_2$. For $i \in [n]$, define the indicator b_i such that $b_i = 1$ iff $E(m_1)_i \neq E(m_2)_i$. Prove that $\prod_{i=1}^n p_i^b_i > N/K$.

Deduce that when $m_1 \neq m_2$, $\Delta(E(m_1), E(m_2)) \geq n - k + 1$.

(b) We will now adopt the Welch-Berlekamp algorithm to handle E. Suppose $r = (r_1, \ldots, r_n)$ is the received word, where $r_i \in \Z_{p_i}$.

i. Prove there can be at most one $m \in \Z_K$ such that

$$\prod_{i:E(m)_i \neq r_i} p_i^{b_i} \leq \sqrt{N/K}.$$

(1)
In what follows, let r be the unique integer in \mathbb{Z}_N such that $r \mod p_i = r_i$ for every $i \in [n]$ (note that the Chinese Remainder theorem guarantees that there is a unique such r).

ii. Assuming such an m exists, prove that there exist integers y, z with $0 \leq y < \sqrt{NK}$ and $1 \leq z \leq \sqrt{N/K}$ such that $y \equiv rz \pmod{N}$.

iii. Prove that if y, z are any integers satisfying the above conditions, then in fact $m = y/z$. Note that a pair of integers (y, z) satisfying the above can be found by integer linear programming in a fixed number of dimensions in polynomial time.

(c) Instead of condition (1), what if we want to decode under the more natural condition: $| \{ i \mid E(m)_i \neq r_i \} | \leq \frac{n-k}{2}$? Show how this can be done by calling the above decoder many times and erasing the last i symbols for each choice of $i \in [n]$.

1. (Mandatory). Revisit the list-decoding algorithm for Reed-Solomon codes we gave in class, and re-prove it taking care also of the output list size. That is, prove Theorem 6 from Lecture 2 (taken from [2]):

Theorem 1. There exists an algorithm that given as input:
- Code parameters: \(q, n \leq q, \deg \),
- A sequence of \(n \) distinct pairs \(\{(\alpha_i, y_i)\}_{i=1}^{n}, \alpha_i, y_i \in \mathbb{F}_q \) and
- An agreement parameter \(\tau > \sqrt{\frac{2\deg}{n}} \),

outputs a list of all polynomials \(p_1, \ldots, p_\ell \) of degree at most \(\deg \) satisfying \(|\{i \in [n] : p_j(\alpha_i) = y_i\}| \geq \tau n\). Furthermore, the list size \(\ell \) is at most \(2\tau \). The algorithm runs in time \(\text{poly}(n, \log q) \).

Notice that the list \(\{(\alpha_i, y_i)\}_{i=1}^{n} \) may have several values for the same \(\alpha_i \).

2. (Mandatory). Prove that there exists an explicit \([n,k]_2\) code that is \((\frac{1}{2} + \epsilon, L)\) locally list-decodable where \(n = \text{poly}(k, 1/\epsilon) \) and \(L = \text{poly}(n/\epsilon) \). Notice that the code is binary. The (local) list-decoding procedure runs in time \(\text{poly}(\log k, 1/\epsilon) \).

For the proof you may take the Reed-Muller code we have analyzed in class, and concatenate it with the Hadamard code. Also recall that \(\text{Had} \) is \((\frac{1}{2} + \epsilon, \frac{1}{4\epsilon^2})\)-list-decodable.

3. (Know). Last item is Mandatory.

Prove that if there exists \(f \in \text{PSPACE} \) with \(\text{Size}(f) \geq s(n) \) then for every \(\epsilon(n) > 0 \) there exists another \(f' \in \text{SPACE}(\text{poly}(n, \log \frac{1}{\epsilon})) \) such that \(\text{Size}_{\frac{1}{2} + \epsilon}(f) \geq \frac{s(n/10)}{\text{poly}(n/\epsilon)} \).

The proofs puts together what we have done in class:
- Suppose \(f \in \text{PSPACE} \) and \(\text{Size}(f) \geq s(n) \). Given \(f_n : \{0,1\}^n \to \{0,1\} \) construct \(f'_n : \{0,1\}^{n'} \to \{0,1\} \) that extends \(f_n \) and is supposed to be hard on average (and you need the binary version as in the previous question). What is \(n' \) as a function of \(n \)? Show that \(\{f'_n\} \in \text{PSPACE} \) by using Lagrange’s multi-variate interpolation.
- Assume \(C' \) is of size \(s' \) and computes \(f' \) correctly with \(\frac{1}{2} + \epsilon \) average-case success. Show a randomized circuit computing \(f \) on inputs of length \(n \), such that for every input it succeeds with success probability \(2/3 \). Which splitting point do you use?
- Get a deterministic circuit and conclude the theorem.
- For which of the classes \(\text{PSPACE} \), \(\text{E, EXP} \), \(\text{NEXP} \), \(\text{PSPACE}^{\text{SAT}}, \text{E}^{\text{SAT}}, \text{EXP}^{\text{SAT}}, \text{NEXP}^{\text{SAT}} \) this worst-case to average-case reduction holds?

4. (Know). Let \(\epsilon > 0 \) and set \(\delta = \epsilon/2 \). Prove that there exists an integer \(c \) such that given access to a Boolean function on \(n^\delta \) variables with circuit complexity at least \(n^{c\delta} \), there is a pseudorandom generator \(G : \{0,1\}^{n^\delta} \to \{0,1\}^n \) computable in \(2^{O(n^c)} \) time which fools circuits of size \(n \).
5. (Mandatory). Prove that if there exists a function $f \in E$ such that $\text{Size}(f) = 2^{\Omega(n)}$ then $\text{BPP} = \text{P}$.

6. (Mandatory). Prove that if there exists $f \in E$ such that $\text{Size}(f) = 2^{\Omega(n)}$ then $\text{MA} = \text{NP}$.

7. (Mandatory). Let $\text{Size}^{\text{SAT}}(f_n)$ be the minimal size of a circuit C with oracle gates to SAT that solves f_n on inputs of length n.

Prove that if there exists $f \in E$ such that $\text{Size}^{\text{SAT}}(f) = 2^{\Omega(n)}$ then $\text{AM} = \text{NP}$.

8. (Know). Let $f : \{0,1\}^n \rightarrow \{0,1\}$ and suppose $C : \{0,1\}^n \times \{0,1\} \rightarrow \{0,1\}$ is a circuit such that

$$\Pr_{x \sim U_n} [C(x,f(x)) = 1] - \Pr_{x \sim U_n,b \sim U_1} [C(x,b) = 1] > \delta.$$

Prove that there exists another circuit $C' : \{0,1\}^n \rightarrow \{0,1\}$ such that

$$\Pr_{x \sim U_n} [C'(x) = f(x)] > \frac{1}{2} + \delta.$$

9. (Mandatory). Prove that for every large enough n there exists a function $f : \{0,1\}^n \rightarrow \{0,1\}$ such that $\text{Size}_{\frac{1}{2} + \varepsilon}(f) \geq 2^{n/10}$ for $\varepsilon = 2^{-\Omega(n)}$.

10. (Mandatory). Prove that (non-explicitly) there exists a (ℓ, a)-design $S_1, \ldots, S_m \subseteq [t]$ where $a = O(\ell^2/t)$ and $m = 2^{\Omega(\ell)}$.

11. Two norm-one vectors $v_1, v_2 \in \mathbb{R}^n$ are almost orthogonal if $|\langle v_1, v_2 \rangle| \leq \varepsilon$.

 (a) (Mandatory). Show how to convert an (ℓ, a)-design $S_1, \ldots, S_m \subseteq [t]$ into:

 - A set of m nearly orthogonal norm-one vectors.
 - A binary error-correcting code of length t with m codewords and large distance.

 (b) (Mandatory). How many norm-one orthogonal vectors can one put into \mathbb{R}^d?

 (c) (Mandatory). How many norm-one ε-almost orthogonal vectors can one put into \mathbb{R}^d?

 Give a lower bound.

 (d) (Bonus). How many norm-one ε-almost orthogonal vectors can one put into \mathbb{R}^d? Give an upper bound. Can you reach tight estimations?

12. (Mandatory). Consider the parity function $\text{Parity} : \{0,1\}^\ell \rightarrow \{0,1\}$. It is known that for every d, Parity cannot be computed on more than a $\frac{1}{2} + 2^{-\Omega(\ell^2/d)}$ fraction of the inputs by circuits of depth d and size $2^{O(\ell^2/d)}$ (you do not need to prove this).

 With that, prove that the class RAC^0 (of constant-depth, polynomial-size circuits that has access to random input bits) is contained in $\bigcup_{\varepsilon} \text{DSPACE}(\log^\varepsilon n)$.

13. (Mandatory). Prove: If there exists an $(\varepsilon = \frac{1}{4})$-PRG $G : \{0,1\}^\ell \rightarrow \{0,1\}^{\ell+1}$ against circuits of size s running in time exponential in ℓ then there exists a function f in EXP that is worst-case hard for circuits of size s.

HW 3 – Non-uniform computation and the IKW theorem

Due: 30.12.2016

1. (Mandatory). (Luca Trevisan) Let $S(n) \leq \frac{2^n}{n}$. Show a function f on n bits such that

$$f(n) - O(n) \leq \text{Size}(f) \leq f(n).$$

2. (Mandatory). Prove: If $P = NP$ then $\text{EXP} \not\subseteq P/\text{poly}$.

3. (Know). Prove: If $NP \subseteq P/\text{poly}$ then $PH \subseteq P/\text{poly}$.

4. (Know). Prove that $NP = P$ implies $\Sigma_2 = P$ and $PH = P$.

5. (Mandatory). Prove: If $NP \subseteq BPP$ then $BPP = PH$.

7. (Know). Prove: Succinct3SAT is NEXP-complete (under polynomial-time reductions).

Hint: Recall the reduction from NP to SAT.

8. (Mandatory). Prove the following hierarchy theorems:

(a) For any fixed c, $\text{EXP} \not\subseteq \text{i-o-DTIME}(2^{n^c})/n^c$.
(b) If $\text{NEXP} = \text{EXP}$ then there exists a fixed d such that $\text{NTIME}(2^n)/n \subseteq \text{DTIME}(2^{n^d})/n$.

9. (Mandatory). We will prove that if $\text{NEXP} = MA$ then $\text{NEXP} \subseteq P/\text{poly}$.

(a) Prove: If $\text{EXP} \not\subseteq P/\text{poly}$ then $\text{MA} \subseteq \text{i-o-NTIME}(2^n)$.
(b) Prove: If $\text{NEXP} = \text{EXP}$ then $\text{NEXP} \not\subseteq \text{i-o-NTIME}(2^{n^a})/n$.
(c) Conclude that if $\text{NEXP} = \text{MA}$ then $\text{NEXP} \subseteq P/\text{poly}$.

10. (a) (Mandatory). Prove that $\text{coNEXP} \subseteq \text{NEXP}/\text{poly}$.
(b) (Bonus). Prove that if $\text{coNP} \subseteq \text{NP}/\text{poly}$ then PH collapses to the third level.

11. (Mandatory). What is wrong with the following proof that $\text{NEXP} \not\subseteq P/\text{poly}$: Define $\Sigma_2\text{EXP}$ the class of languages solvable by $\exists y \forall z \phi(x, y, z)$, where $|y|, |z|, |\phi(x, y, z)|$ are exponential in the size of $|x|$. Similarly define $PH - \text{EXP}$.

- If $\text{EXP} = \text{NEXP}$ then $\text{EXP} = \text{PH} - \text{EXP}$. However, in $\text{PH} - \text{EXP}$ there are languages not in P/poly, hence: $\text{EXP} = \text{NEXP}$ implies $\text{NEXP} \not\subseteq P/\text{poly}$.
- But, $\text{NEXP} \subseteq P/\text{poly}$ implies $\text{NEXP} = \text{EXP} = \text{MA}$ which implies $\text{NEXP} \not\subseteq P/\text{poly}$. A contradiction.
- Thus, we may conclude that $\text{NEXP} \not\subseteq P/\text{poly}$.

12. (Mandatory). Prove that for every k, Σ_4 contains a language that does not belong to $\text{SIZE}(n^k)$.

13. (Mandatory). (Arbel Admoni) Prove: If $\text{DTIME}(n^{\log n}) \subseteq \text{NP}$ then $\text{NEXP} \not\subseteq P/\text{poly}$.

14. (Mandatory). (Arbel Admoni) Prove: If $\text{NP} = \text{PH}$ then $\text{NEXP} \not\subseteq P/\text{poly}$.

HW 4 – Natural proofs, Promise problems, Hierarchies and Counting classes

Out: 2.1.2017
Due: 22.1.2017

1. (Mandatory). Let $H \subseteq F_n$ be the GGM construction with seed length k built using a PRG $G : \{0,1\}^k \rightarrow \{0,1\}^{2k}$. Prove that if there exists a distinguisher running in time $2^{O(n)}$ that ϵ-distinguishes between the uniform distribution over H and the uniform distribution over F_n then there exists a distinguisher running in time $2^{O(n)}$ that $\epsilon \cdot 2^{-n}$-distinguishes $G(U_k)$ and U_{2k}.

2. (Mandatory). Let $AC^0[2]$ denote the class of functions computable by a polynomial-size, constant-depth circuits allowing Parity gates.

 - Prove that for any integer d, there exists a family $G_{n,s} \subseteq F_n$, where s is a seed of size polynomial in n, such that every function in $G_{n,s}$ is in $AC^0[2]$ and $G_{n,s}$ looks random for $2^{O(n)}$-size depth-d circuits, i.e., for any polynomial-size (in 2^n) depth d circuit family $C_n : F_n \rightarrow \{0,1\}$, $|\Pr[C_n(F_n) = 1] - \Pr[C_n(G_{n,s}) = 1]| < 2^{-\omega(n)}$.
 - Use question 12 from HW2 to prove that there is no lower bound proof which is AC^0-natural and useful against $AC^0[2]$.

3. (Mandatory). Suppose that the promise problem Π' is Cook-reducible to the promise problem Π and the queries made by the reduction never violate the promise. Then, $\Pi \in \text{Promise-NP} \cap \text{Promise-coNP}$ implies $\Pi' \in \text{Promise-NP} \cap \text{Promise-coNP}$.

4. (Mandatory). Use the randomness-efficient error amplification to prove that $BPP \subseteq ZPP^\text{NP}$.

5. (Mandatory). Let $d \geq 1$ be some constant. Prove that if $BPTIME(n^d) = BPP$ then

 $BPTIME(t(n)) = BPTIME(t(n)^c)$

 for every constant $c \geq 1$ and time-constructible function $t(n)$ that satisfies $t(n) \geq n^d$.

6. (Mandatory). Let $t(n)$ and $T(n)$ be time-constructible functions such that there exists a constant k for which $T^{(k)}(t(n)) = 2^{\omega(t(n))}$. Then, $BPTIME(t(n)) \subsetneq BPTIME(T(t(n)))$.

7. (Fortnow) (Mandatory). The class GapP is the class of functions f such that for some NP machine M, $f(x)$ is the number of accepting paths minus the number of rejecting paths of M on x. The class FP represent the class of polynomial-time computable functions.

 Prove that for all functions f, the following are equivalent:

 (a) $f \in \text{GapP}$.
 (b) f is the difference of two $\#P$ functions.
 (c) f is the difference of a $\#P$ function and an FP function.
 (d) f is the difference of an FP function and a $\#P$ function.

8. (Fortnow) (Mandatory). Let f be a GapP function and q a polynomial. Prove that the following are GapP functions:
(a) $\sum_{|y| \leq q(|x|)} f(x, y)$.
(b) $\prod_{0 \leq y \leq q(|x|)} f(x, y)$.
References
