\[
\Pr_{e \sim (\mathcal{V}, e) \in E} \left(\mathcal{V} \cap \mathcal{E} \neq \emptyset \right) \geq \frac{1}{2} \]

\[
\Pr_{e \in \mathcal{E}} \left(\mathcal{V} \cap \mathcal{E} \neq \emptyset \right) \geq \frac{1}{8}
\]

\[
E \left(\frac{1}{|E'|} \cdot \max_{e \in E'} \left| \mathcal{V} \cap \mathcal{E} \right| \right) \geq \sum_{(\mathcal{V}, e) \in E} \Pr_{e \sim (\mathcal{V}, e) \in E} \left(\mathcal{V} \cap \mathcal{E} \neq \emptyset \right)
\]

\[
\geq \sum_{(\mathcal{V}, e) \in E} \Pr_{e \sim (\mathcal{V}, e) \in E} \left(\mathcal{V} \cap \mathcal{E} \neq \emptyset \right) \Pr \left(\mathcal{V} \cap \mathcal{E} \neq \emptyset \right) \Pr \left(\mathcal{V} \cap \mathcal{E} \neq \emptyset \right)
\]

\[
\geq \frac{|E|}{2} \cdot \frac{3}{8} = \frac{3}{16} |E|
\]

\[
\mathcal{O} \left(\frac{|\mathcal{E}|}{\log |\mathcal{V}|} \right)
\]

\[
\frac{1}{|\mathcal{E}|} \cdot \mathcal{O} \left(\frac{|\mathcal{E}|}{\log |\mathcal{V}|} \right) \cdot \frac{1}{|\mathcal{V}|} \cdot |\mathcal{V}| = \frac{1}{|\mathcal{V}|}
\]

\[
\Pr \left(X_{i} = 1 \right) \geq \frac{1}{q}
\]

\[
E \left(\frac{1}{|\mathcal{V}|} \sum_{(\mathcal{V}, e) \in E} \right) \leq \Pr \left(X_{i} = 1 \right) \cdot |\mathcal{E}| + \Pr \left(X_{i} = 0 \right) \cdot \frac{1}{q} \cdot |\mathcal{E}|
\]

\[
\Rightarrow \frac{1}{q} \cdot |\mathcal{E}| + \frac{1}{q} \cdot |\mathcal{E}| = \frac{1}{q} \cdot |\mathcal{E}|
\]
\[E(x_i) \geq \frac{c}{4} \quad \Rightarrow \quad X_t, \ldots, X_T \]

\[\Pr \left(\sum X_t < \frac{c}{8T} \right) \leq \Pr \left(\left| \sum X_t - \mu \right| > \frac{\mu}{2} \right) \leq e^{-\frac{\mu^2}{4\sigma^2}} \leq e^{-\frac{c^2}{32\sigma^2}} \]

\[\frac{\mu}{4} \text{ if \ } T = O(1) \]

\[E(X_t) = 0 \]
לקראת הכנסה לעיון: השתייכות לaphs
ולא לaphs המוארת כלשהי

לعبة: השתייכות לaphs המוארת כלשהי
ולא לaphs המוארת כלשהי

\[\Pr \left[x \notin e \right] < \frac{1}{2} \]

ולאו כלשהי: השתייכות לaphs המוארת כלשהי
ולא לaphs המוארת כלשהי

\[\Pr \left(\exists \alpha \in \mathcal{A} \land e \cap \alpha \neq \emptyset \right) \geq 1 - e^{\frac{1}{2}} \]

ולא כלשהי: השתייכות לaphs המוארת כלשהי
ולא לaphs המוארת כלשהי

\[\Pr \left(\forall \alpha \in \mathcal{A} \land e \cap \alpha = \emptyset \right) \geq \frac{1}{2} \]

ולא כלשהי: השתייכות לaphs המוארת כלשהי
ולא לaphs המוארת כלשהי

\[\Pr \left(\forall \alpha \in \mathcal{A} \land e \cap \alpha = \emptyset \right) \geq \frac{1}{2} \]

ולא כלשהי: השתייכות לaphs המוארת כלשהי
ולא לaphs המוארת כלשהי

\[\Pr \left(\forall \alpha \in \mathcal{A} \land e \cap \alpha = \emptyset \right) \geq \frac{1}{2} \]

ולא כלשהי: השתייכות לaphs המוארת כלשהי
ולא לaphs המוארת כלשהי

\[\Pr \left(\forall \alpha \in \mathcal{A} \land e \cap \alpha = \emptyset \right) \geq \frac{1}{2} \]
\[p \left(\exists Z_{x,y} \left(\exists u \in \mathcal{U} \right) \right) = p \left(\bigcup_{x,y \in \mathcal{U}} \bigcap_{w \in \mathcal{W}(x)} \bigcup_{v \in \mathcal{V}(y)} \mathcal{W}(w) \right) \leq \prod_{w \in \mathcal{W}(x)} \left(1 - \frac{1}{2d(w)} \right) \leq \left(1 - \frac{1}{2d(w)} \right)^{\mathcal{W}(x)} \leq e^{-\frac{1}{2d(w)}} \]

\[\mathcal{P}(X \in \mathcal{U} | n_{x,y}) \geq \frac{1}{2} \]

\[\mathcal{P}(X \notin \mathcal{U} | n_{x,y}) \leq \sum_{w \in \mathcal{W}(x)} \mathcal{P}(X \notin \mathcal{U} | n_{x,y}) \leq \sum_{w \in \mathcal{W}(x)} \frac{1}{2d(w)} \leq \frac{1}{2} \]
\[x = \frac{1}{2} \left(1 + \sqrt{1 + 4k} \right) \]

\[y = \frac{1}{2} \left(1 + \sqrt{1 + 4k^2} \right) \]

\[z = \frac{1}{2} \left(1 + \sqrt{1 + 4k^3} \right) \]

\[p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \]

\[p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_0)^2}{2\sigma^2}} \]

\[p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-x_0)^2}{2\sigma^2}} \]
\[p_\epsilon \left(\frac{1}{2}, \frac{1}{2}, 0 \right) \geq \min \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4} \right) \geq \min \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{6} \right) = \frac{1}{6} \]

\[\frac{1}{2} \geq \epsilon \cdot p_\epsilon \left(\text{H}\{v\} \mid \text{H}\{w\} \right) - \frac{1}{2} \geq \frac{1}{2} \cdot \frac{1}{2} \geq \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \]

\[\frac{1}{2} \geq \epsilon \cdot d(\text{H}\{w\}) \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \]