Ex1: DET and low-depth arithmetic and boolean circuits

1. Prove the Schwartz-Zippel lemma.
 If $p : \mathbb{F}^m \to \mathbb{F}$ is a non-zero polynomial of total degree d over a field \mathbb{F} and $\Lambda \subseteq \mathbb{F}$, then $\Pr_{a_1,\ldots,a_m \in \Lambda}[p(a_1,\ldots, a_m) = 0] \leq \frac{d}{|\Lambda|}$.

2. Shortly outline the proof of each of the following:
 (a) Addition of two integers represented in binary is in AC^0?
 (b) Addition of n integers (n-bit each) is in NC^1?
 (c) Multiplication of two integers in NC^1?
 (d) Multiplication of two boolean matrices is in AC^0?

3. Prove that $\mathsf{NC}^k \subseteq \mathsf{SPACE}(O(\lg^k n))$. Note the cost of pointers.

4. Prove that $\mathsf{NL} \subseteq \mathsf{AC}^1$. If you use a reduction, carefully note the resources it takes.

5. (Ben-Or) Denote $e_d(x_1, \ldots, x_n) = \sum_{S \subseteq [n], |S| = d} \Pi_{j \in S} x_j, 1 \leq d \leq n$.
 We are going to construct a depth three, polynomial size arithmetic formula for e_d over \mathbb{C} (with addition and multiplication gates of unbounded fan-in). For that:
 - Define $p(t) = p_{x_1,\ldots,x_n}(t) = \Pi_{i=1}^n (t + x_i)$. p is a degree n polynomial $p(t) = \sum_{i=0}^n a_i t^i$. what are the a_i as functions of x_1, \ldots, x_n?
 - Build the required circuit.
 Hint: first evaluate p on n points that you choose, then deduce the coefficients of p from the evaluations.
 - Is the family of circuits that you build uniform?

6. Show that matrix inversion of lower triangular matrix is in SAC^1.
 SAC^1: uniform polynomial-size boolean circuits with $O(\log n)$ depth over: unbounded fan-in \lor, bounded fan-in \land and \neg at input level only.

7. Show that computing the characteristic polynomial of an arbitrary matrix is in SAC^1.

8. Show that checking the rank of an arbitrary matrix and inverting an invertible matrix are both in SAC^1.