We know that the minimum distance of a code is related to the packing radius. The Hamming bound was derived by observing the number of non-intersecting balls that could be packed in $\{0,1\}^n$.

A related notion is that of covering radius.

A set $S \subseteq \{0,1\}^n$ has a covering radius r if every point in $\{0,1\}^n$ is contained in some ball $B(z, r)$ for $z \in S$ (i.e., any point in $\{0,1\}^n$ is within distance r from some point in S).

Such a set is called a covering code in $\{0,1\}^n$ for radius r. For a given set, we can ask what is its minimum covering radius. An interesting, and hard, question is to determine the minimal size of a covering code of radius r. Bounds exist relating the covering radius of codes with the minimum distance of its dual.

Intuitively, we shall show that if a code C has distance d, then its dual has small 'essential' covering radius.

From this, we shall conclude that the dual code is of large enough size, & hence the code is small.

The essential covering radius is a relaxation where we only demand that most points are covered.

i.e. A set $S \subseteq \{0,1\}^n$ has essential covering radius r if

\[\left| \bigcup_{z \in S} B(z, r) \right| \geq \frac{1}{n} 2^n \]

i.e. at least a $\frac{1}{n}$ fraction of points are covered by balls of radius r around points in S.

Formally, we shall show the following:

* Let $C \subseteq \{0,1\}^n$ be a linear code of min. distance d.

Then, for $r = \frac{1}{2} n - \sqrt{d(n-d)} + o(n)$,

\[\left| \bigcup_{z \in C^\perp} B(z, r) \right| \geq \frac{2^n}{n} \]

i.e. $\frac{1}{2} n - \sqrt{d(n-d)} + o(n)$ is an essential covering radius for the dual of a linear distance-d code.

Once we establish this, then it is easy to derive the MRRW bound for binary linear codes.

* First note that $|C| \leq n |B(z,r)|$ for r as above.

\[Pf: \quad |C^\perp| |B(z,r)| \geq \left| \bigcup_{z \in C^\perp} B(z, r) \right| \geq \frac{2^n}{n} \]
Also \(|C| \cdot |C^\perp| = 2^n \)

Hence \(|C| \leq n |B(z, r)| \).

\[(*) \text{ (MRRW bound). } R \leq H_2 \left(\frac{1}{2} - \sqrt{8(1-\delta)} \right) + o(1) \]

\[\geq n \frac{2^{nH_2 \left(\frac{1}{2} - \sqrt{8(1-\delta)} \right) + o(1)}}{n} \]

(as \(\text{Vol}(n, \text{pt}) \sim 2^n H_2(p) \)).

Taking logarithms & noting that \(\log \frac{n}{n} = o(n) \), we get the result.

Thus, we shall now concentrate on proving that Hamming balls of small radius, around codewords in the dual, essentially cover \(\{01\}^n \).

Note that we can more generally translate any set additively over codewords in the dual, & see when they essentially cover the whole space.

i.e. Suppose \(B \) is some set \(\subseteq \{01\}^n \). We can then consider translates \(z + B \) for \(z \subseteq C^\perp \).

We want some property that \(B \) should satisfy so that

\[\sum_{z \subseteq C^\perp} (z + B) \geq 2^n \frac{2^n}{n} \]

(Note that \(B \) being a Hamming ball of radius \(r \) is just a special case of this. Once we obtain a general property demanded of \(B \) for essential covering (of the dual), then we can simply show that \(B(z, r) \) satisfies this property for the given \(r \)).

This property is expressed in terms of the maximum eigenvalue of the set \(B \).

For \(B \subseteq \{01\}^n \), define its maximum eigenvalue

\[\lambda_B = \max \left\{ \frac{\langle Af, f \rangle}{\langle f, f \rangle} \middle| f: \{01\}^n \rightarrow \mathbb{R} \text{, supp}(f) \subseteq B \right\} \]

Here \(A \) is the adjacency matrix of the boolean hypercube graph.

Thus \(\lambda_B \) is the maximal eigenvalue of the adjacency matrix of the subgraph induced by vertices of \(B \).

We shall now show that sets \(B \) with high enough maximal
After that, we shall show that $B(x,n)$ satisfies this max.
eigenvalue condition for the required n, & we would be
done.

Let $C \subseteq \{0,1\}^n$ be a linear distance d code, and $B \subseteq \{0,1\}^n$
be such that $\lambda_B \geq n - 2d + 1$.

Then $| \bigcup_{Z \in C^t} (Z + B) | \geq \frac{2^n}{n}$.

for f_B (First note that since $\hat{c}_e(x) = \frac{1}{2^n} c(x)$, if C
is of distance d, then for x s.t. $wt(x) < d$
$\hat{c}_e(x) = 0$.
(i.e. small weight coefficients in the fourier transform
of the dual are 0).

Also, note the following simple results which shall be
used soon:
- For $g : \{0,1\}^n \rightarrow R$, $(Ag)(x) = \sum_{i=1}^n g(x + e_i)
- A g(x) = 1 \cdot g(x_1) + 1 \cdot g(x_2) + ... + 1 \cdot g(x_n)$
 where $x_1, x_2, ... x_n$ are the n neighbors of x.
 Thus $A g(x) = \sum_{i=1}^n g(x + e_i)$.

Suppose $f_B : \{0,1\}^n \rightarrow R$ with $\text{Supp}(f_B) \subseteq B$ is a
maximizer of $\langle Af, f \rangle$ i.e. $\lambda_B = \frac{\langle Af, f \rangle}{\langle f, f \rangle}$
(We shall denote f_B as f and λ_B as λ from now on)
Then:
- f is non negative $\forall x \in \mathbb{R}$
- $\langle Af, f \rangle$ can only be increased by making negative terms
 positive, for the same $\langle f, f \rangle$, as A is nonnegative
- $\forall x \in \mathbb{R}$, $A f(x) = \lambda f(x)$
 Consider A^B and f^B where we restrict to B.
 Then the result follows from Courant-Fischer theorem.
- $\forall x$, $A f(x) \geq \lambda f(x)$. Thus $A f \geq \lambda f$
 For $x \in B$, we showed above.
 For $x \notin B$, $f(x) = 0$, hence the inequality holds.

Now our aim is to show that $| \bigcup_{Z \in C^t} (Z + B) |$ is large
enough.
For this, we shall appropriately define a function F whose
support is contained in \(\bigcup_{z \in \mathbb{C}^d} (z+B) \) and then show that the function's support is large.

To show that a function's support is large, note that a function on small support has a large ratio between its second moment & square of first moment. That is:

By Cauchy-Schwarz Inequality, if \(U \) is its support,

\[
\mathbb{E}[F]^2 = \langle F, 1_U \rangle \leq \mathbb{E}[F^2] \mathbb{E}[1_U] = \frac{|U|}{2^n} \mathbb{E}[F^2]
\]

Hence, we only need to find an \(F \) with \(\text{supp}(F) \) contained in \(\bigcup_{z \in \mathbb{C}^d} (z+B) \) such that

\[
\frac{\mathbb{E}[F^2]}{\mathbb{E}[F]^2} \leq n
\]

We shall define such an \(F \) using \(f \), as follows:

Let \(f_z(x) = f(x+z) \) - a shifted version of \(f \) for each \(z \).

Then define:

\[
F = \frac{1}{2^n} \sum_{z \in \mathbb{C}^d} f_z - 1_{\mathbb{C}^d} * f
\]

Note that \(\text{supp}(f_z) \subseteq z+B \), hence

\[
\text{supp}(F) \subseteq \bigcup_{z \in \mathbb{C}^d} (z+B)
\]

We shall now show that \(\frac{\mathbb{E}[F^2]}{\mathbb{E}[F]^2} \leq n \) by showing that:

\[
\langle AF, F \rangle \geq \lambda \mathbb{E}[F^2]
\]

\[
\langle AF, F \rangle \leq n \mathbb{E}[F^2] + (n-2d) \mathbb{E}[F^2]
\]

Once we show these, then note that:

\[
\lambda \mathbb{E}[F^2] \leq n \mathbb{E}[F^2] + (n-2d) \mathbb{E}[F^2]
\]

\[
\Rightarrow \mathbb{E}[F]^2 \geq \frac{\lambda - (n-2d)}{n} \mathbb{E}[F^2] \geq \frac{\mathbb{E}[F^2]}{n}
\]

Since \(\lambda - (n-2d) \geq 1 \).

Thus, we now only have to show the two bounds on \(\langle AF, F \rangle \).

\[
\mathbb{P}_\delta: \text{For } x \in \{0,1\}^n,
\]

\[
AF(x) = \sum_i F(x + e_i) = \frac{1}{2^n} \sum_i \sum_{z \in \mathbb{C}^d} f(x+z+e_i)
\]

\[
= \frac{1}{2^n} \sum_{z \in \mathbb{C}^d} AF(x+z) \geq \frac{1}{2^n} \sum_{z \in \mathbb{C}^d} \frac{\lambda}{2^n} f(x+z)
\]
Then \(\langle AF \rangle = \mathbb{E}[AF(x)F(x)] \geq \lambda \mathbb{E}[F^2] \)

* \(\langle AF \rangle \leq n \mathbb{E}[F]^2 + (n-2d) \mathbb{E}[F^2] \)

Proof: \(\langle AF \rangle = \sum_x \hat{A}F(x) \hat{F}(x) \quad (\text{Parseval Theorem}) \)

Hence we need to study \(\hat{A}F \) and \(\hat{F} \).

First note that:

\[
\hat{F}(\alpha) = \int_{C^d} \hat{f} \quad (\text{Property of Convolutions})
\]

\[
= \frac{|C^d|}{2^n} \int_{C^d} \hat{f}(\alpha)
\]

Hence for \(\alpha \) st. \(\text{wt}(\alpha) < d \), \(\hat{F}(\alpha) = 0 \).

Next consider \(\hat{A}F \).

In fact, for any \(g : \{0,1\}^n \rightarrow \mathbb{R} \),

\[
\hat{A}g(\alpha) = \hat{g}(\alpha) (n-2 \text{wt}(\alpha))
\]

Proof: \(\hat{A}g = \sum_i g_{e_i} \)

Hence \(\hat{A}g(\alpha) = \sum_i \hat{g}_{e_i}(\alpha) = \hat{g}(\alpha) \sum_i (-1)^{\langle \alpha, e_i \rangle} \)

(\text{This is because, in general if } g_z(x) = g(x+z) \),

then \(\hat{g}_z(\alpha) = \frac{1}{2^n} \sum_x g_z(x)(-1)^{\langle \alpha, x \rangle} \)

\[
= \frac{1}{2^n} \sum_x g(x+z)(-1)^{\langle \alpha, x \rangle}
\]

\[
= \frac{1}{2^n} \sum_y g(y)(-1)^{\langle \alpha, y \rangle}
\]

\[
= (-1)^{\langle \alpha, z \rangle} \frac{1}{2^n} \sum_y g(y)(-1)^{\langle \alpha, y \rangle}
\]

\[
= (-1)^{\langle \alpha, z \rangle} \hat{g}(\alpha)
\]

Now \((-1)^{\langle \alpha, e_i \rangle} = (-1)^{\alpha_i} = 1 - 2\alpha_i \)

(\text{where } \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \text{ with } \alpha_i \in \{0,1\}^d \)

Thus \(\hat{A}g(\alpha) = \hat{g}(\alpha) \sum_i (1 - 2\alpha_i) \)

\[
= \hat{g}(\alpha) (n-2 \text{wt}(\alpha))
\]

Thus \(\sum_x \hat{A}F(x) \hat{F}(x) = \sum_x \hat{F}(\alpha)^2 (n-2 \text{wt}(\alpha)) \)

\[
= n \hat{F}(\alpha)^2 + \sum_{\text{wt}(\alpha) \geq d} \hat{F}(\alpha)^2 (n-2 \text{wt}(\alpha))
\]
\[n \hat{f}(0)^2 + (n-2d) \sum_{x \in B} \hat{f}(x)^2 \leq n \hat{f}(0)^2 + (n-2d) \sum_{x \in B} \hat{f}(x)^2 = n \mathbb{E}[f^2] + (n-2d) \mathbb{E}[f^2] \]

Hence we have proved that for \(B \) such that \(\lambda_B \geq (n-2d+1) \), \(\mathbb{E}[\sum_{x \in B} (z+B)_x] \geq \frac{2n}{n^2} \).

We now need to show that for \(B \) being a Hamming ball of radius \(r \), its maximum eigenvalue is large enough, i.e. \(\lambda_B \geq n-2d+1 \) for appropriate choice of \(r \).

We shall arrive at the right \(r \) so that this is true by showing in general that:

For \(B = B(0,r), \lambda_B(n,r) \geq 2 \sqrt{r(n-r)} - o(n) \).

Pf: We shall specify a function \(f \) with \(\text{supp}(f) \subseteq B \) and estimate \(\langle A f, f \rangle \) for this \(f \). The \(f \) shall be chosen so that \(\langle f, f \rangle \) this Rayleigh coefficient is huge large enough.

Consider \(f \) as follows:

\[f : \{0,1\}^n \rightarrow \mathbb{R} \]

\(f \) depends only on the weight of \(x \) and has

\[\text{support} \{ x : r-M \leq \text{wt}(x) \leq r \} \subseteq B(0,r) \]

where \(M \) is chosen so that \(M = o(n) \) (say \(n^{3/4} \)).

Then \(f(x) = \left\{ \begin{array}{ll} \frac{1}{\sqrt{M}} & \text{if } \text{wt}(x) = i \in [r-M, r] \\ 0 & \text{otherwise} \end{array} \right. \)

We shall now compute \(\langle A f, f \rangle \) and \(\langle f, f \rangle \).

\[\langle f, f \rangle = \frac{1}{2^n} \sum_{i=r-M}^{r} \sum_{x \in \binom{[n]}{i}} f(x)^2 = \frac{1}{2^n} \sum_{i=r-M}^{r} \binom{n}{i} f(i)^2 = \frac{1}{2^n} (M+1) = \frac{1}{2^n} \left(M + o(1) \right) \]

\[\langle A f, f \rangle = \frac{1}{2^n} \sum_{x} A f(x) f(x) = \left(\sum_{x} \sum_{y \in \binom{[n]}{i}} A f(x) f(x) \right) \frac{1}{2^n} \]

Now consider an \(x \) of weight \(i \). It has \(i \) neighbors of weight \(i-1 \) and \(n-i \) neighbors of weight \(i+1 \).

Hence \(A f(x) = \sum_{j=i}^{n} f(x + e_j) = i f(i-1) + (n-i) f(i+1) \).
Hence
\[
\sum_{x} Af(x)f(x) = \sum_{i=1}^{n} \binom{n}{i} \left[f(i) \left(i f(i-1) + (n-i) f(i+1) \right) \right] = \sum_{i=S-M+1}^{n} i \sqrt{\binom{n}{i}} + \sum_{i=S-M}^{n-i} (n-i) \sqrt{\binom{n}{i+1}} = 2 \sum_{i=M+1}^{n} i(n-i+1)
\]

Now note that \(i(n-i+1) \geq (S-M+1)(n-S+M) \geq n(n-1) - o(n^2)\)

Thus \(\langle Af f \rangle \geq \frac{1}{2^n} M(2 \sqrt{n(n-1)} - o(n))\)

\[\Rightarrow \lambda_{B(0,n)} \geq \frac{\langle Af f \rangle}{\langle f f \rangle} \geq 2 \sqrt{n(n-1)} - o(n)\]

We now only need \(n\) such that \(\lambda \geq n-2d+1\)

\[2 \sqrt{n(n-1)} \geq n-2d\]

\[\Rightarrow n = \frac{n}{2} - \sqrt{d(n-d)} + o(n)\]

Thus, putting it all together:

* For \(\gamma = \frac{n}{2} - \sqrt{d(n-d)} + o(n)\), \(B(0,n)\) has maximum eigenvalue

\[\lambda_{B(0,n)} \geq n-2d+1\]

* For any set \(B \subseteq \{0,1\}^n\) s.t. \(\lambda_{B} \geq n-2d+1\), translations of \(B\) over \(C^d\) essentially cover \(\{0,1\}^n\), i.e.

\[\bigcup_{z \in C^d}(z+B) \geq \frac{2^n}{n}\]

Hence

\[\bigcup_{z \in C^d} B(z,\gamma) \geq \frac{2^n}{n}\] for \(\gamma = \frac{n}{2} - \sqrt{d(n-d)} + o(n)\)

* This implies that the rate of the code \(C\) is such that

\[R \leq H_2\left(\frac{1}{2} - \sqrt{b(1-b)}\right) + o(1)\] for \(\delta \leq \frac{1}{2}\)

Thus, we have derived the same MRRW bound for binary linear codes without involving directly Delsarte's LP or orthogonal polynomials.

Also, among all sets \(B \subseteq \{0,1\}^n\), the Hamming ball has maximum second eigenvalue (i.e. we consider a given volume for \(B\))

i.e. \(\lambda_{B} \leq (1 + o(1)) \lambda_{B_{B(0,n)}}\) (Faber-Krahn Maximizer for Hamming cube)