List-decoding Reed-Muller Codes
Sudan et al, 1999

Daniel Shahaf
Tel-Aviv University
December 2008
1 Introduction

- Warm-up
- Unique-decoding
- Reed-Muller Codes
- Lines in \mathbb{F}^m
Let \mathbb{F} be a field of size q, and fix some distinct $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$.

- A Reed-Solomon code $C : \mathbb{F}^k \rightarrow \mathbb{F}^n$ maps a message $m = \langle m_1, \ldots, m_k \rangle \in \mathbb{F}^k$ to the codeword $w = \langle p_m(\alpha_1), \ldots, p_m(\alpha_n) \rangle \in \mathbb{F}^n$ consisting of the evaluations of the polynomial $p_m(x) = \sum_{i=0}^{k-1} m_i x^i$.

- Reed-Solomon codes are $[n, k, n - (k - 1)]_q$ codes.
Schwartz-Zippel Lemma

Let $S \subseteq \mathbb{F}$ and take some (non-zero) m-variate polynomial Q of total degree L. Then $Q(x) \neq 0$ for at least $1 - \frac{L}{|S|}$ of the points in S.

Proof

- By induction on m.
- $m = 0, 1$ trivial.
- For $m > 2$: write

 $$Q(x_1, \ldots, x_m) = \sum_{i=0}^{t} x_1^i Q_i(x_2, \ldots, x_m)$$

 and note that

 $$\left(1 - \frac{L-t}{|S|}\right) \left(1 - \frac{t}{|S|}\right) \geq \left(1 - \frac{L}{|S|}\right).$$
Agreement

We will need a notion of distance:

Definition

The disagreement $\delta(w, w')$ of two codewords w, w' is the fraction of coordinates x wherein $w(x) \neq w'(x)$.

- It is a normalized Hamming distance.

Definition

The agreement $\tau(w, w')$ of two codewords w, w' is the fraction of coordinates x wherein $w(x) = w'(x)$.
Consider a code \(C : \mathbb{F}^k \rightarrow \mathbb{F}^n \) with distance \(d \).

Definition (unique-decoder)

An algorithm \(A \) is said to correct \(e \) errors \((e \leq \frac{d-1}{2}) \) if \(A(y) = x \in \mathbb{F}^n \) for every \(y \in \mathbb{F}^n \) whenever \(x \in \text{Im } C \) and \(d_H(x, y) \leq e \).
Decoders

Consider a code $C : \mathbb{F}^k \rightarrow \mathbb{F}^n$ with distance d.

Definition (unique-decoder)

An algorithm A is said to **correct** e errors ($e \leq \frac{d-1}{2}$) if $A(y) = x \in \mathbb{F}^n$ for every $y \in \mathbb{F}^n$ whenever $x \in \text{Im} \ C$ and $d_H(x, y) \leq e$.

Definition (local unique-decoder)

Similarly, an algorithm A as above which also gets as input a coordinate $i \in [n]$ and outputs x_i is said to be a **local unique-decoding algorithm**.

- x_i is well-defined because $x = A(y)$ is well-defined.
Complexity

Polynomial time?

- Would like a unique-decoder to run in $\text{poly}(\text{output})$ time.
 - The output, a message, is shorter than the input (a codeword).
 - Sometimes, drastically shorter.

- Can beat the usual $\text{poly}(\text{input})$ due to the redundancy in the encoding.
Complexity

Polynomial time?

- Would like a unique-decoder to run in $\text{poly}(\text{output})$ time.
 - The output, a message, is shorter than the input (a codeword).
 - Sometimes, drastically shorter.
- Can beat the usual $\text{poly}(\text{input})$ due to the redundancy in the encoding.

Local-decoding

- For the local unique-decoder, we will permit the running time to depend on $|i| = \log n$ as well.
- Still, it’s expected to be faster than the global decoder.
Reed-Muller Codes

Definition

The \((m, d, q)\) Reed-Muller code maps tuples of \(\mathbb{F} = \text{GF}(q)\) to the evaluations of \(m\)-variate polynomials with total degree \(d\).

- **Parameters:** \([q^m, \binom{m+d}{d}, 1 - \frac{d}{q}]_q\).
- **Codewords are viewed as functions** \(w : \mathbb{F}^m \rightarrow \mathbb{F}\).
As special cases, the Reed-Muller code contains the Reed-Solomon code \((m = 1, d = k - 1)\) and Hadamard \((m = n, d = 1)\) codes.

Alternatively, we can take \(m = \log k\) and \(d = (\log k) / \log \log k = o(\log k)\) to get low-degree, low-variate polynomials (for message length \(k\)).
Lines in \mathbb{F}^m

Definition

We have two ways to define what a line in \mathbb{F}^m is:

- A function mapping $t \in \mathbb{F}$ to $\ell_{a,b}(t) := a + tb \in \mathbb{F}^m$.
- A set of points of the form $\ell_{a,b} := \{ a + tb \mid t \in \mathbb{F} \}$.
Properties of Lines

Independence:

- For fixed, distinct $t_1, t_2 \in \mathbb{F}$, and random A, B, the random variables $\ell_{A,B}(t_1)$ and $\ell_{A,B}(t_2)$ are distributed independently and uniformly on \mathbb{F}^m.

- For fixed $a \in \mathbb{F}^m$, non-zero $t \in \mathbb{F}$, and uniformly random B, the random variable $\ell_{a,B}(t)$ is distributed uniformly in $\mathbb{F}^m \setminus \{a\}$.

Proof?
Properties of Lines

Independence:

- For fixed, distinct $t_1, t_2 \in \mathbb{F}$, and random A, B, the random variables $\ell_{A,B}(t_1)$ and $\ell_{A,B}(t_2)$ are distributed independently and uniformly on \mathbb{F}^m.
- For fixed $a \in \mathbb{F}^m$, non-zero $t \in \mathbb{F}$, and uniformly random B, the random variable $\ell_{a,B}(t)$ is distributed uniformly in $\mathbb{F}^m \setminus \{ a \}$.

Composition:

- The composition $p|_\ell : \mathbb{F} \to \mathbb{F}$ of a line $\ell : \mathbb{F} \to \mathbb{F}^m$ and an m-variate polynomial $p : \mathbb{F}^m \to \mathbb{F}$ is a univariate polynomial of the same (total) degree as p.
- $p|_{\ell_{a,b}}(t) = p(a + tb)$.

Proof?

Composition:

The composition $p|_\ell : \mathbb{F} \to \mathbb{F}$ of a line $\ell : \mathbb{F} \to \mathbb{F}^m$ and an m-variate polynomial $p : \mathbb{F}^m \to \mathbb{F}$ is a univariate polynomial of the same (total) degree as p.

$p|_{\ell_{a,b}}(t) = p(a + tb)$.

[s]
2 Local Unique-decoding

- The Simple Decoder
- The Improved Decoder
Idea: to find \(p(a) \), approximate \(p|_{\ell} \) for some line \(\ell = \ell_{a,b} \) through \(a \). (Note that \(p(a) = p|_{\ell_{a,b}}(0) \).)

Interface

- Input: Oracle access to noisy codeword \(f \), point \(a \in \mathbb{F}^m \), degree parameter \(d \).
- Promise: The distance of \(f \) from a valid codeword is at most \(\frac{1}{3(d+1)} \).
 - A valid codeword is evaluations of a degree-\(d \) polynomial.
- Output: \(p(a) \).
Definition

Code
- Pick random and independent $b \in \mathbb{F}^m$. Let $\alpha_1, \ldots, \alpha_{d+1} \in \mathbb{F}$ be non-zero field elements. Set $\beta_i = f(\ell_{a,b}(\alpha_i))$.
- Find a univariate polynomial h that passes through (α_i, β_i) for all $1 \leq i \leq d + 1$.
 - h approximates $p|\ell_{a,b}$.
- Print $h(0)$.

Definition

Code
- Pick random and independent $b \in \mathbb{F}^m$. Let $\alpha_1, \ldots, \alpha_{d+1} \in \mathbb{F}$ be non-zero field elements. Set $\beta_i = f(\ell_{a,b}(\alpha_i))$.
- Find a univariate polynomial h that passes through (α_i, β_i) for all $1 \leq i \leq d + 1$.
 - h approximates $p|\ell_{a,b}$.
- Print $h(0)$.
Correctness

Lemma

For every \(a \in \mathbb{F}^m \), if \(\delta(f, p) \leq \frac{1}{3(d+1)} \), then the Simple Decoder outputs \(p(a) \) with probability \(2/3 \).

Proof

Define events \(B_i = [\beta_i \neq p|_{\ell_{a,b}(\alpha_i)}] \).

- A fixed \(B_i \) occurs iff \(f(\ell_{a,b}(\alpha_i)) \neq p(\ell_{a,b}(\alpha_i)) \).
- Recall that the point \(\ell_{a,b}(\alpha_i) \) is random.
- Therefore, the probability of non-collision is exactly the average disagreement \(\delta := \delta(f, p) \).
- At probability \(1 - (d + 1)\delta \geq 2/3 \), none of the \(B_i \)'s occur, and then \(h = p|_{\ell_{a,b}} \) and \(h(0) = p(\ell_{a,b}(0)) = p(a + 0b) = p(a) \).
Room for Improvement

- The error resistance was relatively low: $\Theta(1/d)$.
- The factor $1/(d + 1)$ caused by applying the union bound to $d + 1$ events.
 - We required $d + 1$ queries with no errors.
The error resistance was relatively low: $\Theta(1/d)$.

The factor $1/(d + 1)$ caused by applying the union bound to $d + 1$ events.

- We required $d + 1$ queries with no errors.

Trade-off: we’ll run more queries, but allow for some errors.

- The number of queries we set, arbitrarily, to $5(d + 1)$.

We’ll need an algorithm to recover a polynomial that agrees with most of the measured points.

- We can use the Berlekamp-Welch algorithm.
- The numbers check out.
Declaration

Idea: allow for some errors (events B_i) in the sampling; use Reed-Solomon unique-decoding to correct them.

Interface

- Input: Oracle access to noisy codeword f, point $a \in \mathbb{F}^m$, degree parameter d.
- Promise: The distance of f from a valid codeword is at most $1/5$.
 - A valid codeword is evaluations of a degree-d polynomial.
- Output: $p(a)$.
Definition

Code

- Pick random and independent $b \in \mathbb{F}^m$, and non-zero $\alpha_1, \ldots, \alpha_{5(d+1)} \in \mathbb{F}$. Set $\beta_i = f(\ell_{a,b}(\alpha_i))$.

- Find a univariate polynomial h that passes through at least 60% of the points (α_i, β_i) as $1 \leq i \leq 5(d + 1)$.
 - h approximates $p|_{\ell_{a,b}}$.

- Print $h(0)$.
Correctness

Lemma

For every \(a \in \mathbb{F}^m \), if \(\delta(f, p) < 1/5 \), then the Improved Decoder outputs \(p(a) \) with probability \(> 1/2 \).

Proof

Define events \(B_i = [\beta_i \neq p|\ell(\alpha_i)] \).

- As before, the probability of \(B_i \) is exactly \(\delta := \delta(f, p) \).
- Define an indicator variable \(B' = [\sum B_i > 2(d + 1)] \).
- By Markov’s Inequality,
 \[
 \Pr[B'] = \Pr[\sum_{i=1}^{5(d+1)} B_i > 2(d + 1)] < \frac{5\delta}{2} \cdot \frac{d + 1}{d + 1}.
 \]
- Require \(5\delta/2 < 1/2 \).
Local List-decoding

- Definitions
- The Algorithm
- Theoretical Foundation
Global List-decoding

Definition

The \(\tau \)-agreement of \(f \in \mathbb{F}^m \to \mathbb{F} \), denoted \(\text{Ag} (f, \tau) \), is the set of all functions \(g \in \mathbb{F}^m \to \mathbb{F} \) that agree with \(f \) on (at least) \(\tau \) coordinates.

- \(\tau \) may be the absolute number or a fraction.

Caveat: \(A = \lambda f. (a_1, \ldots, a_{|\mathbb{F}^m|}) \) meets the definition. But runs in super-polynomial time.

How to extend to local decoding?
Global List-decoding

Definition

The τ-agreement of $f \in \mathbb{F}^m \rightarrow \mathbb{F}$, denoted $\text{Ag}(f, \tau)$, is the set of all functions $g \in \mathbb{F}^m \rightarrow \mathbb{F}$ that agree with f on (at least) τ coordinates.

- τ may be the absolute number or a fraction.

Definition

An algorithm A is said to be a (τ, L) list-decoder if for every noisy codeword $f \in \mathbb{F}^m \rightarrow \mathbb{F}$ it outputs an $L < L'$-sequence $(z_1, \ldots, z_{L'}) \in (\mathbb{F}^m \rightarrow \mathbb{F})^{L'}$ that contains each legitimate codeword $y \in \text{Ag}(f, \tau)$ at least once.

Global List-decoding

Definition

The τ-agreement of $f \in \mathbb{F}^m \rightarrow \mathbb{F}$, denoted $\text{Ag}(f, \tau)$, is the set of all functions $g \in \mathbb{F}^m \rightarrow \mathbb{F}$ that agree with f on (at least) τ coordinates.

- τ may be the absolute number or a fraction.

Definition

An algorithm A is said to be a (τ, L) list-decoder if for every noisy codeword $f \in \mathbb{F}^m \rightarrow \mathbb{F}$ it outputs an $L < L'$-sequence $(z_1, \ldots, z_L') \in (\mathbb{F}^m \rightarrow \mathbb{F})^{L'}$ that contains each legitimate codeword $y \in \text{Ag}(f, \tau)$ at least once.

- Caveat: $A = \lambda f. (a_1, \ldots, a_{|\mathbb{F}^m \rightarrow \mathbb{F}|})$ meets the definition.
 - But runs in super-polynomial time.
- How to extend to local decoding?
Local List-decoding

Definition

An algorithm A is said to be a (τ, L) local list-decoder if ...

.$$...?$$
Local List-decoding

Definition

An algorithm A is said to be a (τ, L) local list-decoder if there exist $L' > L$ algorithms $A_i = A(i)$ (for $1 \leq i \leq L'$) such that, for every noisy codeword $f \in \mathbb{F}^m \rightarrow \mathbb{F}$ and for every codeword $p \in \text{Ag}(f, \tau)$, there exists an $s \in [L']$ such that, for every $a \in \mathbb{F}^m$, the probability (over coin tosses of A_s) that A_s computes $p(a)$ is at least $2/3$:

$$A \in \text{LLD}_{\tau, L} \iff \exists L' > L : \exists A_1, \ldots, A_{L'} :$$
$$\forall f \in \mathbb{F}^m : \forall p \in \text{Ag}(f, \tau) :$$
$$\exists s \in [L'] : \forall a \in \mathbb{F}^m :$$
$$\text{Prob}_{A_s}[A_s(a) = p(a)] \geq 2/3.$$
Overview

- Goal: local list-decoding of the Reed-Muller code.
- We will consider polynomials with very low agreement with f.
 - We will have to account for this in the interpolation step.
 - Use Reed-Solomon list-decoding.
- Each such polynomial will be uniquely specified by an advice associated with it.
 - The advice will be its evaluation at a point.
Helper Function

We use the following family of subroutines $A_{z,\gamma}(a,f)$.

Amplifier(a, f)

- **Input:** Oracle access to noisy codeword f, point $a \in \mathbb{F}^m$, degree parameter d, agreement parameter τ.
- **Hard-wired:** point $z \in \mathbb{F}^m$ and advice $\gamma \in \mathbb{F}$.
Helper Function

We use the following family of subroutines $A_{z,\gamma}(a, f)$.

Amplifier(a, f)

- **Input:** Oracle access to noisy codeword f, point $a \in \mathbb{F}^m$, degree parameter d, agreement parameter parameter τ.
- **Hard-wired:** point $z \in \mathbb{F}^m$ and advice $\gamma \in \mathbb{F}$.
- Take the line $\ell = \{ a + t(z - a) \mid t \in \mathbb{F} \}$.
- Find all degree-d univariate polynomials h_1, \ldots, h_n that have relative agreement $\tau/2$ with $f|\ell$ (over \mathbb{F}).
 - h_i approximate $p|\ell$.
- If there is a **unique** h_i that evaluates to γ at z, print $h_i(0) \approx p(a)$.

Local List-decoder

This is the main subroutine of the local list-decoder algorithm A_{LLD}.

Code for A_{LLD}

- **Input**: Oracle access to noisy codeword f, point $a \in \mathbb{F}^m$, degree parameter d, agreement parameter parameter τ.

- For each $(z, \gamma) \in \mathbb{F}^m \times \mathbb{F}$ independently:
 - Run the unique-decoder with $A_{z,\gamma}$ as oracle.
 - Print whatever it does (if any).
We will show:

- That $A_{z,p(z)} = p(a)$ with arbitrarily large probability over random choices of a and z.
- That all polynomials with relative agreement $\tau/2$ are pairwise distinct on a large fraction of the space.
Correctness

We will show:

- That $A_{z,p(z)} = p(a)$ with \textit{arbitrarily large} probability over random choices of a and z.
- That all polynomials with relative agreement $\tau/2$ are pairwise distinct on a large fraction of the space.

To see that the algorithm A_{LLD} is \textbf{correct}:

- There is a \textit{fixed} $z \in \mathbb{F}^m$ such that
 \[\text{Prob}_{a \in \mathbb{F}^m} [A_{z,p(z)}(a) = p(a)] > 1 - \epsilon. \]
- When A_{LLD} tries that z and $\gamma = p(z)$, then $A_{z,\gamma} = A_{z,p(z)}$ will be correct over $1 - \epsilon$ of all a's.
- Therefore, the unique-decoder will compute $p(a)$ correctly at a probability of $2/3$.
Time Analysis

Proposition

If $\tau > 2\sqrt{d/q}$ then $A_{z,\gamma}$ runs in $\text{poly}(q, m)$ time.

Proof

- Need to show we meet the Reed-Solomon list-decoding precondition, which is $t > 2\sqrt{kn}$ for finding all degree-k polynomials that agree on at least t points out of n.
- $t = \tau q/2$, $n = q$, $k = d$.
Proposition

Let \(p_1, \ldots, p_n \) be all \(m \)-variate degree-\(d \) polynomials over \(\mathbb{F} \) having agreement \(\tau \geq \sqrt{2d/q} \) with \(f \). Then:

- \(n \leq 2/\tau \).
- The probability (over uniform choice of \(z \in \mathbb{F}^m \)) that all \(p_i(z) \) are distinct is at least \(1 - \frac{2d}{\tau^2 q} \).
Proposition

Let p_1, \ldots, p_n be all m-variate degree-d polynomials over \mathbb{F} having agreement $\tau \geq \sqrt{2d/q}$ with f. Then:

- $n \leq 2/\tau$.
- The probability (over uniform choice of $z \in \mathbb{F}^m$) that all $p_i(z)$ are distinct is at least $1 - \frac{2d}{\tau^2 q}$.

Proof

For the second part, let $B_{ij} = [p_i(z) = p_j(z)]$ for $i < j$. Note that $\text{Prob}[B_{ij}] \leq d/q$ and apply the union bound to get $1 - \binom{n}{2} \frac{d}{q}$.
Proposition

Let \(p_1, \ldots, p_n \) be all \(m \)-variate degree-\(d \) polynomials over \(\mathbb{F} \) having agreement \(\tau \geq \sqrt{2d/q} \) with \(f \). Then:

- \(n \leq 2/\tau \).
- The probability (over uniform choice of \(z \in \mathbb{F}^m \)) that all \(p_i(z) \) are distinct is at least \(1 - \frac{2d}{\tau^2q} \).

Proof

For the second part, let \(B_{ij} = [p_i(z) = p_j(z)] \) for \(i < j \). Note that \(\text{Prob}[B_{ij}] \leq d/q \) and apply the union bound to get \(1 - \binom{n}{2} \frac{d}{q} \).

Conclusion

With high probability, a codeword \(w = p \in \mathbb{F}^m \rightarrow \mathbb{F} \) is uniquely defined by its value on a random point.
Lemma

Let p be a polynomial that has τ-agreement with f. Take some $\epsilon > 0$ such that $q \geq \frac{16(d + 1)}{\tau^2 \epsilon}$. Then the probability over random $\alpha, z \in \mathbb{F}^m$ that $A_{\alpha, p(z)}$ prints $p(\alpha)$ is at least $1 - \epsilon$.
The Amplifier Amplifies

Lemma

Let p be a polynomial that has τ-agreement with f. Take some $\epsilon > 0$ such that $q \geq 16(d + 1)/\tau^2\epsilon$. Then the probability over random $a, z \in \mathbb{F}^m$ that $A_{z,p}(z)$ prints $p(a)$ is at least $1 - \epsilon$.

Proof overview

- Define events:
 - B is “the agreement of p and f on ℓ is less than $\tau/2$.”
 - C is “there exist two univariate polynomials, each having $\tau/2$ agreement with $f|_{\ell}$, that evaluate equally at z.”
- Convince: if neither occurs, then $A_{z,p}(z)$ prints $p(a)$.
- Bound the probabilities of B or C occurring.
Bounding the Probabilities of “Bad” Events

Claim

\[\text{Prob}_{z,a}[B] \leq 4/\tau q. \]

Proof

Let \(B_t \) be the indicator variable of “agreement at a given point \(\ell(t) \in \ell \) (for \(t \in \mathbb{F} \))”. Its probability is \(\tau \). Use Chebyshev’s inequality on the random variable \(\sum B_t \).

Claim

\[\text{Prob}_{z,a}[C] \leq 8d/\tau^2 q \text{ whenever } \tau > 2\sqrt{d/q}. \]

Proof

Use the previous proposition with \(\tau := \tau/2 \).
To finish the lemma, pick large enough q so each event has probability $< \epsilon/2$.

$q \geq 16(d+1)/\tau^2 \epsilon$ is sufficient.

The probability that neither B nor C would occur is $1 - \epsilon$.

Summary

1. Introduction
2. Local Unique-decoding
3. Local List-decoding
Noise proves nothing.
—Mark Twain

The End.