This worksheet is mandatory. You have to solve at least of the problems and submit it to me by the due date.

Topic today: Graphs and eigenvalues.

Definitions: We assume \(G \) is an undirected \(D \) regular graph with \(n \) vertices, and \(A \) is its adjacency matrix. Thus \(A \) is an \(n \times n \) symmetric matrix. We denote its eigenvector basis by \(v_1, \ldots, v_n \) and the corresponding eigenvalues by \(\lambda_1 \geq \ldots \geq \lambda_n \).

1. (Courant-Fischer equalities) Let \(G \) be as above. Prove that:
 - \(\lambda_1 = \max \{ < Ax, x > : \|x\| = 1 \} \)
 - \(\lambda_2 = \max \{ < Ax, x > : \|x\| = 1, x \perp v_1 \} \).
 - what is \(\lambda_k \)?
 - \(\lambda_n = \min \{ < Ax, x > : \|x\| = 1 \} \).
 - Define \(\bar{\lambda} = \max \{ \lambda_2, -\lambda_n \} \).

2. Let \(G \) be as above. Show that:
 - \(\lambda_1 = d \) and for every \(i, |\lambda_i| \leq d \).
 - \(G \) is connected iff \(\lambda_2 < \lambda_1 \).
 - Suppose \(G \) is connected. \(\lambda_n = -d \) iff \(G \) is bipartite. In that case what is \(v_n \)?

3. Let \(\{ G_n \} \) be a family of degree \(D \) graphs. We saw in class that \(\liminf_{n \to \infty} \lambda(G_n) \geq \sqrt{n} \).
 Prove that \(\liminf_{n \to \infty} \bar{\lambda}(G_n) \geq 2^{1/4} \sqrt{n} \).
 Hint: Look at \(\text{Trace}(A^4) \).

4. (a) (Random walks over expanders converge fast to uniform)
 Let \(G = (V, E) \) be as above. Let \(p_0 \) be some probability distribution over the vertices.
 Let \(p_t \) be the probability distribution after taking \(t \) steps over the graph. Let \(U \) be the uniform distribution over the vertices. Prove that
 \[|p_t - u|_1 \leq \sqrt{n} \cdot (\frac{\bar{\lambda}}{d})^t \]

 (b) Let \(\text{diam}(G) \) be the diameter of the graph (the largest distance between two vertices).
 Prove that \(\text{diam}(G) \geq \log_{d-1}(n) - 1 \) and \(\text{diam}(G) \leq \frac{3}{2} \log(\frac{d}{\bar{\lambda}}) n + 1 \).

5. Define
 \[\Phi_G(s) = \min_{S:|S|=s} \frac{|\Gamma(S) \setminus S|}{|S|} . \]

 Let \(G \) be with \(\bar{\lambda}(G) = 2\sqrt{D} \) and \(s \leq \frac{n}{2d} \). Prove that \(\Phi_G(s) \geq \frac{D}{16} \).

1
6. (Hoffman) Let G be as above. Let $\alpha(G)$ denote the size of the maximal independent set in G. Prove that

- $\alpha(G) \leq \frac{\lambda}{D} |V|$.
- $\alpha(G) \geq \frac{\lambda_{\text{min}}}{\lambda_1-\lambda_{\text{min}}} |V|$.