Topic today: Extractors, generators and two questions about space bounded computations.

We say a generator \(G : \{0, 1\}^d \rightarrow \{0, 1\}^m \) fools a predicate \(A \), if

\[
\left| \Pr_{x \in \{0, 1\}^m}[A(x) = 1] - \Pr_{y \in \{0, 1\}^d}[A(G(y)) = 1] \right| \leq \varepsilon.
\]

We say \(G \) fools a class of predicates if it fools all members in the class.

1. Prove that for every \(1 \leq k \leq n \) and every \(1 \leq m \leq k + d - \log \log(\frac{1}{\varepsilon}) - O(1) \) and \(\varepsilon > 0 \), there exists a \((k, \varepsilon)\) disperser \(F : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m \) with \(d \leq \log(n - k) + \log(\frac{1}{\varepsilon}) + O(1) \).

2. (ISW99, ISW00)

For a predicate \(A \) on \(m \) bits, and \(y \in \{0, 1\}^m \), define a predicate \(A^{\oplus y} \) on \(m \) bits by having \(A^{\oplus y}(x) = A(x \oplus y) \). Define \(A^{\oplus} \) to be the class of all predicates \(A^{\oplus y} \).

Suppose \(P_1, \ldots, P_r \) are distributions on \(\{0, 1\}^m \) and \(A \) a predicate on \(\{0, 1\}^m \). Suppose one of the distributions \(P_i \) \(\varepsilon \)-fools \(A^{\oplus} \). Prove that \(P = P_1 \oplus \ldots \oplus P_r \) \(\varepsilon \)-fools \(A \), where \(P \) is the distribution obtained by sampling independently the distributions \(P_i \) and taking the xor of the samples.

3. (ISW99, ISW00) A \((k, \varepsilon)\) extractor scheme is a function \(G : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m \) such that:

 - for every \(f \in \{0, 1\}^n \) and every predicate \(A \) on \(m \) bits,
 - if \(G^f \) does not \(\varepsilon \)-fool \(A \),
 - then \(K_A(f) \leq k \).

where \(G^f : \{0, 1\}^d \rightarrow \{0, 1\}^m \) is defined by \(G^f(y) = G(f, y) \), and \(K_A(f) \) is the Kolmogorov complexity of the string \(f \) given free access to oracle calls to \(A \).

Prove that

- A \((k, \varepsilon)\) extractor scheme is a \((k + \log(1/\varepsilon), 2\varepsilon)\) extractor.
- Any explicit \((k, \varepsilon)\) extractor is a \((k + O(1), \varepsilon)\) extractor scheme.

4. Savitch sows that \(NL \subseteq DSPACE(O(\log^2 n)) \). Extend the argument to show that \(BPL \subseteq DSPACE(O(\log^2 n)) \).

5. Use Nisan’s generator to show that \(BPL \subseteq DTIMESPACE(poly(n), O(\log^2 n)) \).