High level design – The Viewer

Revision 3.0, 1/3/2003

Author: Eran Samuni & Moshe Blank
Table of content

31.
General

31.1.
Overview

31.2.
Document Scope

31.3.
Revision history

31.4.
Related documents

42.
Requirements overview

42.1.
Goals & Responsibility

42.2.
System Environment

42.3.
Users

42.4.
Assumptions & Dependencies

42.5.
Performance Requirements

42.6.
Environmental Constraints

53.
Functional Requirements

64.
System Overview

64.1.
Program Static Structure

64.2.
Architecture diagram

64.3.
Component Flow

75.
Data Model

75.1.
Global data structure

75.2.
Internal data structure

76.
User interface

77.
Open Issues

78.
Algorithms

89.
Testing

89.1.
Classes of tests

89.2.
Performance bounds

810.
General comments & important notes

1. General

1.1. Overview

This document describes the design of the viewer application which is part of the workshop anonymous communication.

1.2. Document Scope

This document contains an overview on how the application will be built, basic algorithms and data structures, implementation details and GUI specification.

1.3. Revision history

	Version
	Primary Author(s)
	Description of Version
	Date

	1.0
	Eran Samuni

Moshe Blank
	First Draft
	11.11.2002

	2.0
	Same same
	Design version
	23.11.2002

	3.0
	Same same
	Reality Check
	1.3.2002

1.4. Related documents

· Thwarting traffic analysis: Obscurant Networks for provable Anonymity. By Ron Berman, Amos Fiat, Amnon Ta-shma.

2. Requirements overview

2.1. Goals & Responsibility

The goal of this application is to provide a mathematical analysis of efficiency of the anonymous communication protocol in different test cases.

2.2. System Environment

The Viewer is a stand alone application independent of the other components in the workshop.
2.3. Users

Potation users of the application are anonymous communication system administrators and users wishing to setup system parameters based on their assumptions on the adversary’s resources and their anonymity quality requirements.

2.4. Assumptions & Dependencies

We assume proximity to uniform distribution as the anonymity quality measure.

More assumption will be made in order to simplified the mathematical algorithms and reduce the computational complexity.

2.5. Performance Requirements

His application does not work online, therefore no strict time bounds are required.

Since the problem we are trying to compute is exponential there will be limitations on the system variables (such as the number of nodes that participate in a single round of messages).

2.6. Environmental Constraints
· The application will run on any system that can run java applications (java virtual machine installed).

· Since computations are cpu and memory consuming, we recommend running it on fast computers with sufficient physical memory.

3. Functional Requirements

Following is the functionality provided by the application in order of the user actions:

· At start up general protocol parameters are chosen by the user – number of hopes for message, number of active nodes in the case to be studied.

· User sets parameters for randomization of adversary’s nodes and edges. The application will choose the adversary nodes and edges based on those parameters.

· The user will be shown a graph in which will be n layers (as the number of the hop) and in each layer there will be m nodes (as the number of active nodes). In this graph a message is sent from a node i in layer j to a node i in layer j+1 at time j. Adversary nodes will be tagged in red. Node in layer I will be connected with a red edge to a node in layer i+1 if that edge is controlled by adversary.

· The user will be able to manually assign value to edges and nodes (and override the random values).

· At this point the relevant calculation will be haled.

· The result of the calculation will be displayed to the user. The user will be presented with the following information:

1. Beside each layer the distance from the uniform distribution will be shown.

2. Between every two adjacent layers the number of possible permutation (adversary’s point of view) will be shown.

· The user is given an option to see the relevant graphs:

1. Graph of the distribution function in the last layer.

2. Distance from the uniform distribution as function of time.

· The user will be able to save the graph and the results of the calculations to a file, and load saved graph back to the application.

4. System Overview

4.1. Program Static Structure

The program will consist of two main components – the first component in charge of mathematical analysis, and the second is the utility component – in charge of interaction with user, graphical display and other tasks not connected directly to the main mathematical algorithm.
4.2. Architecture diagram

[image: image1]
4.3. Component Flow

4.3.1. Main loop / Events

Program workflow is controlled by the controller component; the workflow is defined in functional requirements
4.3.2. Threads and synchronization

The mathematical component will be running in a different thread, and will be giving feedback to the utility during the calculations, using shared synchronized object. On the other hand, utility will be able to control the calculations (user break) using another synchronized object.
5. Data Model
5.1. Global data structure

The only data structure is the graph structure of the test case that is passed from the utility component to mathematical component as input for the calculations. The graph will be defined by the values of its edges (0 for good edge, 1 for edge controlled by adversary). This will be passed as two-dimensional array of bits.
Calculation results will be passed from math to utility in two arrays.
5.2. Internal data structure

In the utility components, the graph will contain the edge values as well as node values in additional two-dimensional array of bits.
In the math component, there will be an array of floats that will hold the distribution of permutations after each step. The size of this array will be O(n!).
6. User interface

As described in requirements
7. Open Issues

Performance of Java is a big unknown at this stage, time and space consuming mathematical calculations can prove to be very expensive particularly in Java. The system was designed so that the mathematical component is separate from other parts. This way there is a possibility to perform the calculations in a separate program written in C, and then the math component will serve as an abstraction level between the viewer and the C program.
8. Algorithms

The distance between current and the uniform distributions will be calculated by the following formula:

[image: image2.wmf]å

Î

-

=

n

S

U

U

P

P

D

s

s

s

|

)

(

)

(

|

)

(

where P is the distribution function.

Computation algorithms:

At each iteration of the calculation we will do the following steps:

· Go over each of the red edges and reduce the group of possible permutations at that iteration (if information went through the edge then only the permutations that use that edge are in potential, otherwise only permutations that do not use the edge are in potential). This will be done using array of bits, each bit representing a permutation, initialized with 1s. Each edge will cause some of the permutations to be irrelevant for that iteration, so their value will go from 1 to 0. Each edge will contain array of bits that will represent all permutations, each permutation has value of 1 if it uses that edge, and 0 if it does not. If data is passed through that edge, the set of potential permutations can be calculated by: S’ = S & A, where S’ is the new array of potential permutations, S is the current array of potential permutations and A is the array that corresponds to the edge.

· Calculate the size of the group of potential edges that we calculated in the last step. Each permutation in S has a probability of 1/|S|. At this stage we calculate the distribution function after this iteration, using the following formula:

[image: image3.wmf]å

=

·

Î

+

=

s

t

k

t

k

t

k

s

n

S

S

i

i

S

I

P

P

,

1

|

|

)

(

)

(

)

(

In order to fasten calculations we will study the possibility to use previously calculated multiplication table for permutations.

9. Testing

9.1. Classes of tests

Testing of mathematical component will be made using simple predefined test cases.
9.2. Performance bounds

Performance that will be measured during the tests will affect the development. Our goal is reasonable performance for n=7±2.
Mathematical Core Component

Controller

GUI

Calculation

Request

User Actions

Calculation Result

Display Data

User break

Progress reports

Page 8
High level design – The Viewer

High level design – The Viewer

_1099673028.unknown

_1099676547.unknown

