Center

System

Software Documentation

Bracha Ben
060955929

Broun Boris
310944384

Fogel Roy

066062456

Table of contents

	Some definitions
	3

	General
	3

	Requirements
	4

	Classes’ description
	5

	
The client class

	5

	
The AgentList class
	5

	
The Server class
	7

	
The ServerError class
	9

	 The Log class
	9

	 The SyncObject class
	10

	Threads handling and synchronization
	11

	Performance and test scenarios
	12

	The program’s general flow
	13

	Appendix A – The protocol
	14

	Appendix B – log examples
	15

Some definitions:
Agent – A P2P client.

Center – The network’s server.

Protocol – The protocol described at [BFT02]

General:
Description:

The center system is the main server for the P2P anonymous network. This is a passive server (only handles requests and does not initiate communication with clients).

Purpose:
The purpose is serving clients in the network (Agents), and managing the online clients list.

The server handles two types of requests: Get-list request (clients can also use this request for registering and for updating their details) and quit-request.

Protocol:

A TCP/IP server, which communicates with clients by a special protocol (defined at appendix A).

Implementation method:
A multi-threaded server, under WINDOWS, written in C++.
Source code in form of Microsoft VC++ 6.0 workspace is available.

Inputs and Outputs:

Ini.txt file – stores server and protocol parameters.

Recovery.txt file - server recovery information in case of crash.

Log.txt file – server’s activity log file.

Requirements:
· Manage the active agents list.

· Allow agents to join/quit the protocol and get the active players list by specifying:

· An IP/PORT number.

· A nickname (The system will ensure uniqueness).

· A public key.

· Supply agents with:

· Global time.

· Length of message delivery path.

· Interval between message delivery time.

· Keep-alive time (see Server class description).

· Reply time (see Server class description)

· Recovery – the server saves the agents list on the disk, thus enabling fast recovery in case of a system crash.

· Filtering and deleting inactive agents after some time.

· Maintain agents list static (unchanged) for long period of time (see “switching mechanism”, class AgentList description).
· Logging the server’s operation.
Classes’ description

The Client class

This class holds the basic data of a player in the network – the agent.

Data:

· Name (nick), address (IP, port) and public-key, of a client.

Methods:

	Method
	Description

	Client ()
	Default Constructor

	Client (const AGENT &agent)
	Creates a client from an agent struct (used for adding a client into list)

	Client (const ADDRESS &adr)
	Creates a client from an agent address (used for removing a client from list)

	Client (istream &is)
	Creates a client from file

	Accessors for all data fields
	

	Void write (ostream &os) const
	Writes a client to file

	Void read (istream &is)
	Reads a client from file

The AgentList class
This class holds and manages the online agents list.

Data:
· Two clients’ lists: the R list (the list clients read) and the W list (where changes are written).

Types:

· We define the following types, for readability:

typedef map<key,Client> agent_list;

typedef map<key,Client>::iterator list_iter;

typedef map<key,Client>::const_iterator list_const_iter;
typedef string key;

Map key (IP&PORT)

Methods:

	Method
	Description

	Public methods:
	

	AgentList ()
	Default Constructor

	AgentList (istream &is)
	Creates an agent-list from file (recovery)

	agent_list getList () const
	Returns the R list (a copy)

	Bool updateClient (const Client &c)
	Updates client in W list and returns TRUE if it’s a new client

	Void removeClient (const Client &c)
	Removes client from W list

	Void updateList ()
	Performs a switching

	Void write (ostream &os) const
	Writes the R list to file (recovery)

	Void read (istream &is)
	Reads the R list from file (recovery)

	const agent_list ComputeQuited () const
	Returns a list of agents that exited – issued a “quit” request (for logging purposes)

	const agent_list ComputeExist () const
	Returns a list of agents exist in system

Note: should be used only before switching lists (for logging purposes)

	Private methods:
	

	key makeKey (int ip, short port)
	Returns a map key (for agent list) by concatenating IP and PORT into one string

The class holds all the registered clients in a STL-container – MAP. This map contains clients objects and concatenation of IP-port for a key (uniqueness is assumed).

· Why do we need two lists? – the “Switching mechanism”

We need to keep the network synchronized and “static” for periods of time.

We use the “switching-time” (S.T) parameter to determine these periods.

The server gives clients the R list, which is static. When a client registers, updates his data or quits, the changes are written to the W list. After S.T time, the server initiates the Update-List method:

We erase the R list, perform R := W (update), and clean W (filtering, see next dot).

Then, clients receive the new R list, along with a “list-use-time” parameter, which tells them when they can use it. This parameter is used to give enough time for all the agents in the system to download the new-list, so they can start use it simultaneously.
We calculate “list-use-time” as ”keep-alive-time” (KA.T) from the last S.T. This assures that all clients will have enough time to get the new list, and will start to use it together.

(See server-class description for more detail about KA.T).

· What is filtering?

We use a filtering mechanism to remove clients which abnormally left the system (without a quit-request): After switching the lists we clean W. We set S.T long enough, so all agents will be able to notify their existence (every KA.T of time). Then, if an agent didn’t issue get-list request between switching lists, it won’t be in W at all. So, after the next switching of lists it won’t be among the registered clients.

An illustrative example:
Let say S.T = 1 hour, KA.T = 30 minutes.

The hour is 9:30, the server is running and has 10 agents (A to J) registered. Last switch was on 9:00.

R contains all the agents and W as well (because all the agents already called get-list).

Now, a new client X is calling get-list. The Update-Client method adds X to W list, and we send it the R list. X won’t see itself on the on-line players list (and of course won’t be part of the anonymity protocol), until next switching.

Now the hour is 10:00. We perform switching: R:=W, and clean W. We set “list-use-time” to 10:30 (S.T. + KA.T). Clients receive the new R list, and after 10:30 will use it. Furthermore, X will be in that list (and also might take part of the anonymity protocol).

Note: AgentList class is not a thread safe class .see the reasons below.

The Server class
This class contains all the server data and parameters and has the main server function.

Data:

· MasterSock– the socket which the server listens on.

· Port – the port to which server listens.

· The following parameters are held in CENTER_PARAMS struct (see protocol.h):
· Keep Alive Time (KA.T) – Timer for agents for sending get-list request.

· Tick Time (T.T) – Timer for agents for sending messages (used for synchronization between agents).

· List Use Time (L.U.T) – The time, on which agents are allowed to use the sent list.

· RouteLength (T) – Message delivery path length (protocol parameter).

· ReplyTime - Period of time in which agents should request list.

· CenterTime - Period of time in which agents can send message.
· Log – a log object (see log class).
· Last switch – the time of last switching

· Switching Time (S.T) – Timer for updating-list (see AgentList class) , equals KAT * 2

· Num of threads – used for limiting the number of simultaneous threads (maximum value is defined in protocol.h)
· AgentsList – an AgentList object (see agent-list class)
Methods:

	Method
	Description

	Public methods:
	

	Server()
	Default constructor

	void Start() throw (ServerError)
	Start the server operation (main method)

	void read (istream &is_recovery)
	Reads server’s data: parameters from INI file and list of agents from recovery file (parameter)

	void write (ostream &os) const
	Writes server’s list data to file (recovery)

	Private methods:
	

	time_t GetGlobalTime()
	Returns the global time of server

	void initWinsockDll() throw (ServerError)
	Loads the winsock dll

	SOCKET CreateSocketAndListen() throw (ServerError)
	Creates socket, bind to server’s PORT and listens

Friends:
	void HandleSingleClientThread(LPVOID lpParameter);
	See threads section

	void HandleScreenThread(LPVOID lpParameter);
	See threads section

The class initializes the server’s main socket, binds it, and starts listening on it.

Then, the server’s main loop uses Select system-call to accept clients, without blocking on the accept call.

For each client the server creates a new thread (HandleSingleClient function, see following discussion), which handles that client.

In its main loop, the server checks the current system time. When S.T arrives, the server performs the update-list function and saves all its data to files.

· What is the KA.T?

The keep-alive-time is a timer for agents, which tells them when they should send get-list-request to server (active agents are supposed to send get-list requests periodically, and the keep-alive-time is th length of the period). We use this timer to allow agents to be updated with new agents-lists and parameters and also to notify the system that they still online (see filtering mechanism as described at the AgentList class).

· The HandleSingleClient function:

When a client arrives, the server makes a new thread - HandleSingleClient, to handle it. The function first parses the request, verifying the magic header (to check if the client obeys the communication protocol, see appendix A).

· Handling get-list request: The thread makes a local copy of the server’s

parameters and agents list (see performance section) and calls the update-client function. All of these operations are made in a critical section.

Then the thread is independent from the system and can work locally – it creates a reply, sends it, and terminates.

· Handling quit request: The thread calls remove-client function in a critical section, and terminates (no reply is needed).

· The recovery mechanism:

Every time S.T arrives, the server saves all its data to a pre-defined output file: its current parameters and all the current registered agents (from list W, which after switching will become the current working list).

The user has an option to start the server by loading data from input file, so he can use this option for recovery.

NOTE: If the server was shut-down for a long period of time (more then S.T, for example) we recommend NOT to load the server with recovery files, because the network has probably changed a lot.

The ServerError class

Data:
E – the number of an error.

For readability we have defined the following error enumeration:

enum { CREATE_SOCKET_ERR, BIND_ERR, LISTEN_ERR, ACCEPT_ERR,

 RECEIVE_ERR, SEND_ERR, FILES_ERR, WSA_ERR, MEM_ERR,

 UNRECOGNIZED_REQUEST, UNKNOWN_MAGIC};

 Methods:

	Method
	Description

	Public methods:
	

	Void ServerError (int e)
	Construct a ServerError object from an error type

	int GetErrorCode()
	Accessor for the error type

Friends:
	Ostream &operator<< (ostream &os, const ServerError &e)

	Prints error to ostream

This class contains a single method for printing error messages, given an error code.

When error occurs, we make a server-error object (with the error code), and “throw” it, using the “throw” call. We also use “try” and “catch” in order to handle the errors.

The Log class
This class is used by the center server to log all event’s of meaning to the original protocol and the server system as a whole in a file (“log.txt” typically) for traffic analysis and research purposes. The file has the following structure: Date of event, Time of event, description of event. Currently, the following events are recorded:

· Server’s start
· Server’s shut-down
· Switching of list
· Agents that exited abnormally (down) : Only an approximation
· Agent’s first time registration
· Agent’s quit request
· Agents that exist in the system (after every switch)
(For examples of log files, see appendix B).

The log class (and thus the log file, to avoid sharing violation)is thread-safe, meaning it could be used both in single or multithreaded environment in the same way. This achieved by requesting a mutex object on entry to “dangerous” member functions of this class, and releasing it afterwards.

Data:

· Ofstream log – a text stream where log data is written
· SyncObj FilesLock – a SyncObj that makes the Log thread safe
Methods:

	Methods
	Description

	Public methods:
	

	Log ()
	Log default constructor – opens “log.txt” file

	Log (const string &file)
	Log constructor – logs into text file specified by parameter

	void WriteRegister (ADDRESS adr , bool new_agent=false);
	Log a register event for an agent

	void WriteUnRegister (ADDRESS adr);
	Log a quit request for an agent

	void WriteServerEnd ();
	Log server’s shut-down

	void WriteServerStart ();
	Log server’s start

	void WriteSwitch ();
	Log list switch event

	void WriteQuits(AgentList::list_const_iter quited_agents_begin,AgentList::list_const_iter quited_agents_end);
	Write list of agents that are probably down due to two reasons – Keep-Alive timeout or quit request. All quit requests are logged also by WriteUnRegister (ADDRESS adr);

	Private methods
	

	void WriteMsg (const string &msg);
	Write a message to log

	void WriteTime ();
	Write current time to log

	char * convert(unsigned int ip)
	Converts ip number to dotted representation

The SyncObject class

This class is merely a simple wrapper class to Windows® mutex struct. The adantages of this wrapping are: ease of use, construction, initialization, and no need to worry about destruction.
Data:

HANDLE Mutex – A mutex object used by wrapper
Methods:

	Method
	Description

	Public methods
	

	SyncObj()
	Default Constructor

	void RequestObj()
	Request Mutex

	void ReleaseObj()
	Release Mutex

Threads handling and synchronization
Our server uses several threads:

· void HandleSingleClientThread(LPVOID lpParameter);
We use a private thread for each served client:

Each thread receives the socket of a new client. It reads the request from the client and parses it.

Then, the thread enters a critical section, where it makes a local copy of everything it needs to send to the client (it might seem inefficient. See performance section for details).

Number of these threads is limited (by MAX_THREADS constant in server.h) and is typically 5.

· void HandleScreenThread(LPVOID lpParameter);
This is an independent thread which listens on standard input and waits for a quit request from the server’s administrator.

For Synchronization, all the threads share a single SyncObject, and use its member function (wrappings of WaitForSingleObject./ReleaseMutex functions).

· This is the simplest implementation.

· Our system can’t be “deadlocked”:

· Each critical section contains only simple operations (only assign and arithmetic operations), and thus takes constant amount of time.

· No “circular” holding of resources.

· This implementation is sufficient – clients are handled fairly, there is no “starvation” (see performance section for details).

· The synchronization is needed not only for AgentList class (see above) modification , but also for changing Server’s parameters in critical section.This is the main reason for AgentList class not being a thread safe class.

Performance and Test scenarios
We implement a multi-threaded server, using many copies of our data among the threads. By making all these copies we achieved locality of each thread, and therefore sudden crash of an agent can’t “stuck” our system. Another benefit of this schema is that this is the simplest way to avoid sharing problems.

 Making all these copies might seem inefficient, but we have run several tests on the server under heavy traffic of clients and the results where very good:

We have tested the server with about 100 clients, with KA.T = 1 sec. (S.T = 2 sec.)

(Each client sent to the server a get-list-request every 1 sec and switching was every 2 sec.). The server worked quite well, and after 2 switches he managed to register all clients.

In a normal system, one might expect that clients will arrive independently and therefore traffic will be divided equally. So, giving more realistic parameters (KA.T = 30 minutes, S.T = 1 hour), we expect that the server will be able to serve large amount of clients (fast and without starvation).

We should also note here that after all, the server was written for research purposes (and not for industrial use). Giving that, our server reaches its goal efficiently.
Test scenarios:

Testcase: Heavy traffic.
Description:
We run many agents and set keep-alive time to 1sec.
This creates heavy load on server.
For this test we wrote simple clients that only register on server in a loop, and receive the list. We also used one real agent to check that the list was correct.
Results:
- 50 agents: the server has managed to register and to serve all agents.
- 100 agents: the server has managed to register and to serve all agents.

- 50 Agents up, keep-alive time : 1sec, switching time : 2 sec

· After previous setting, server was shut down and restarted and all agents recovered

· As in previous setting, server was rebooted without shuting down, and most of the Agents were recovered.

· The same with 70 agents

· The same with 100 agents

· The same with 200 agents

Testcases: With Real Agents:

- More realistic tests: up to 10 agents, with keep-alive 3 seconds, switching time 6 seconds.

Software use instructions
The software can be downloaded from www.math.tau.ac.il/~figelroy , as center.zip.

It usually contains binary executables, and source code.

The system uses 3 files:

Ini.txt – A file with server’s parameters.

Recovery.txt – A binary file, used to reload the list of agents in case of server crash,

or any other reason for inactivity.

Log.txt – A text log file, contains software activation history, including active agents,

Times of their registrations, quits, server’s internal events (like switching lists).
To use the software, follow instructions in enclosed Readme.txt file.

The program’s general flow

In boxes marked with asterisk (*) , logging performed.

Appendix A – The protocol
The server and the agents use the following protocol:

· Center’s server listens on port 7878

· Address data:

	IP
	PORT

	4 bytes
	2 bytes

· Agent data:

	Address data
	Public key
	Nickname

	See above
	399 bytes
	12 bytes

· Server’s parameters data

	Length of path
	Global time
	Tick time
	Reply time
	Keep-alive time
	List Use Time

	4 bytes
	4 bytes
	4 bytes
	4 bytes
	4 bytes
	4 bytes

· Format get-list request from agent:

	Magic
	Header
	Agent data

	0xAAEF01AA
	0x33
	See above

	4 bytes
	1 byte
	

· Format get-list reply from center:

	Magic
	Header
	Parameters data
	Number of agents
	Agents data

	0xAAEF01AA
	0x33
	See above
	
	See above

	4 bytes
	1 byte
	
	4 byte
	

· Format quit request from client:

	Magic
	Header
	Address data

	0xAAEF01AA
	0xFF
	See above

	4 bytes
	1 byte
	

- No reply from center
Appendix B – log examples

Here is an example of a log file of a sample run with 4 agents and the following parameters from the ini.txt file:

 tick time (msec)=1000

reply time (msec)=10000

keepalive time (msec)=1000

route length=2
1. Sun Mar 02 15:31:13 2003 SERVER IS UP
2. Sun Mar 02 15:31:16 2003 SERVER IS DOING SWITCHING

3. Sun Mar 02 15:31:16 2003 No agents in system

4. Sun Mar 02 15:31:18 2003 Event: register Client data: IP: 127.0.0.1 PORT: 9996

5. Sun Mar 02 15:31:19 2003 SERVER IS DOING SWITCHING

6. Sun Mar 02 15:31:19 2003 Event : The following agents are in the system

7. Client data: IP: 127.0.0.1 PORT: 9996

8. Sun Mar 02 15:31:22 2003 SERVER IS DOING SWITCHING

9. Sun Mar 02 15:31:22 2003 Event : The following agents are in the system

10. Client data: IP: 127.0.0.1 PORT: 9996

11. Sun Mar 02 15:31:22 2003 Event: register Client data: IP: 127.0.0.1 PORT: 9999

12. Sun Mar 02 15:31:25 2003 SERVER IS DOING SWITCHING

13. Sun Mar 02 15:31:25 2003 Event : The following agents are in the system

14. Client data: IP: 127.0.0.1 PORT: 9996

15. Client data: IP: 127.0.0.1 PORT: 9999

16. Sun Mar 02 15:31:28 2003 SERVER IS DOING SWITCHING

17. Sun Mar 02 15:31:28 2003 Event : The following agents are in the system

18. Client data: IP: 127.0.0.1 PORT: 9996

19. Client data: IP: 127.0.0.1 PORT: 9999

20. Sun Mar 02 15:31:28 2003 Event: register Client data: IP: 127.0.0.1 PORT: 9997

21. Sun Mar 02 15:31:29 2003 Event: register Client data: IP: 127.0.0.1 PORT: 9998

22. Sun Mar 02 15:31:31 2003 SERVER IS DOING SWITCHING

23. Sun Mar 02 15:31:31 2003 Event : The following agents are in the system

24. Client data: IP: 127.0.0.1 PORT: 9996

25. Client data: IP: 127.0.0.1 PORT: 9997

26. Client data: IP: 127.0.0.1 PORT: 9998

27. Client data: IP: 127.0.0.1 PORT: 9999

28. Sun Mar 02 15:31:34 2003 SERVER IS DOING SWITCHING

29. Sun Mar 02 15:31:34 2003 Event : The following agents are in the system

30. Client data: IP: 127.0.0.1 PORT: 9996

31. Client data: IP: 127.0.0.1 PORT: 9997

32. Client data: IP: 127.0.0.1 PORT: 9998

33. Client data: IP: 127.0.0.1 PORT: 9999

34. Sun Mar 02 15:31:37 2003 SERVER IS DOING SWITCHING

35. Sun Mar 02 15:31:37 2003 Event : The following agents are in the system

36. Client data: IP: 127.0.0.1 PORT: 9996

37. Client data: IP: 127.0.0.1 PORT: 9997

38. Client data: IP: 127.0.0.1 PORT: 9998

39. Client data: IP: 127.0.0.1 PORT: 9999

40. Sun Mar 02 15:31:40 2003 SERVER IS DOING SWITCHING

41. Sun Mar 02 15:31:40 2003 Event : The following agents are in the system

42. Client data: IP: 127.0.0.1 PORT: 9996

43. Client data: IP: 127.0.0.1 PORT: 9997

44. Client data: IP: 127.0.0.1 PORT: 9998

45. Client data: IP: 127.0.0.1 PORT: 9999

46. Sun Mar 02 15:31:40 2003 Event: quit Client data: IP: 127.0.0.1 PORT: 9998

47. Sun Mar 02 15:31:43 2003 SERVER IS DOING SWITCHING

48. Sun Mar 02 15:31:43 2003 Event : The following agents are in the system

49. Client data: IP: 127.0.0.1 PORT: 9996

50. Client data: IP: 127.0.0.1 PORT: 9997

51. Client data: IP: 127.0.0.1 PORT: 9999

52. Sun Mar 02 15:31:43 2003 Event: Agent is down Client data: IP: 127.0.0.1 PORT: 9998

53. Sun Mar 02 15:31:46 2003 SERVER IS DOING SWITCHING

54. Sun Mar 02 15:31:46 2003 Event : The following agents are in the system

55. Client data: IP: 127.0.0.1 PORT: 9996

56. Client data: IP: 127.0.0.1 PORT: 9997

57. Client data: IP: 127.0.0.1 PORT: 9999

58. Sun Mar 02 15:31:47 2003 Event: quit Client data: IP: 127.0.0.1 PORT: 9996

59. Sun Mar 02 15:31:49 2003 SERVER IS DOING SWITCHING

60. Sun Mar 02 15:31:49 2003 Event : The following agents are in the system

61. Client data: IP: 127.0.0.1 PORT: 9997

62. Client data: IP: 127.0.0.1 PORT: 9999

63. Sun Mar 02 15:31:49 2003 Event: Agent is down Client data: IP: 127.0.0.1 PORT: 9996

64. Sun Mar 02 15:31:52 2003 SERVER IS DOWN
Here is an explanation for a few lines:
	Line:
	Description

	1
	Server started

	2
	Server switch lists (update). At this time the following data is reported:
· Data of existing agents in the system (line 3)
· Data of agents that exited for some reason during the period from last switch till now.

	11
	Event: registration of a client. The client’s IP and PORT are logged

	12
	Server switch lists (update). We can see that there are two agents in the system (lines 14, 15)

	22
	Server switch lists (update). We can see that there are four agents in the system (lines 24, 25, 26, 27)

	46
	Event: quit request of a client. The client’s IP and PORT are logged

	48
	Server switch lists (update). We can see that there are three agents in the system, and in line 52 the quitted agent is reported to be down.
Note: if a client is reported to be down at this section, and wasn’t reported quitting before, it means that he is down without issuing a quit request.

	64
	Server is down

End of critical section

Enter Critical section

* If S.T has arrived, perform the switching mechanism

Main loop

* Update user data on list W

End of critical section

Enter Critical section

Send list R and parameters to client

* Update user data on list W

Get list request

Quit request

Read request

Thread

Handle new client

Accept new client

Create socket and listen

Initialize W, R & parameters

*Show greeting

*Wait for exit request from user

Thread

