Agent Design
Revision 0.2, Monday, November 25, 2002
Authors:
Erad Fridman

Oded Lavi

Asaf Azarsky
Amir Hadadi

Table of content

31.
General

31.1.
Overview

31.2.
Audience

31.3.
Document Scope

31.4.
Related documents

31.5.
Definitions and Acronyms

42.
Requirements overview

42.1.
Goals & Responsibility

42.2.
System Environment

42.3.
Users

42.4.
Assumptions & Dependencies

42.5.
Performance Requirements

42.6.
Environmental Constraints

53.
Functional Requirements

64.
Design

64.1.
Highlights

64.2.
Basic Assumptions

64.3.
Design Goals and tradeoffs

64.4.
Open issues

65.
System Overview

65.1.
Program Static Structure

75.2.
Component Flow

86.
Data Model

87.
Interfaces

87.1.
System Interface

98.
User interface

99.
Testing

99.1.
Classes of tests

910.
Appendix – Include Files

1. General

1.1. Overview

This document contains design specification and functional requirements for the Agent program, as part of the P2P anonymous communication network.
1.2. Audience

Dotan Emanuel.
1.3. Document Scope

This document will focus on the Agent program design, and interfaces with the other groups.
1.4. Related documents
For our team conventions and standards you may please refer to the following document.
· Peer2Peer Conventions and Standards, Erad Fridman, 15.11.2002.
1.5. Definitions and Acronyms

· Agent – The client communicating over the defined network.
· Center – Server which holds information about other agents and general parameters.

2. Requirements overview

2.1. Goals & Responsibility

This component was made to communicate over the network using the Anonymous network defined in the article, with other agent components.
2.2. System Environment

The Agent is a program which will be run under windows operating system and communicating to other agents using TCP/IP.
2.3. Users

The users of this software are of course terrorists world wide and all kinds of criminals using anonymous network for their illegal activities.
2.4. Assumptions & Dependencies

We assume the public key cryptography component we have chosen is unbreakable in reasonable time. Also assuming center is secured and maintained by the good guys.
2.5. Performance Requirements

The ability to operate with a large group of agents who communicate simultaneously .
2.6. Environmental Constraints

· Hardware – A reasonable fast computer for being able to create private key in reasonable time.

· Software – Windows operating system.

· TCP/IP installed on computer.
3. Functional Requirements
Agent Program

The agent program was meant for giving clients across anonymous network to communicate with each other.
· On startup will let the user logon by choosing a nickname.

· Private/Public key will be initialized.

· Register to Center using the nickname, public key and ip address.

· Display the active agents across the network.

· Give user the ability to send messages to other users across the network.
· Give user the ability to reply to messages received over the network.
· On exit will log off and deinit keys.
4. Design

4.1. Highlights

The Agent program will let user communicate over the anonymous network with other agents.
4.2. Basic Assumptions

Center is providing all information and is not hostile.
4.3. Design Goals and tradeoffs

The most important goals in our design is to keep Agent program as simple as possible yet accurate according to the article protocol and bugless. We assume simplicity thus we do not deal with extreme situations and handling major errors by gracefully closing the application (hopefully with a suitable message).
· Performance: We will make sure cryptography does not make the system much slower.
· Usability – We are not going to implement unnecessary features and just stick to our priority tasks.
· Maintainability – Program will be written according to agreeable standards we chose in advance thus it will be readable and consistent across all modules.
4.4. Open issues

We still have to decide how we are going to implement the thread safe message queue which will be the interface between the Receive message thread and the main program.

5. System Overview

5.1. Program Static Structure

All components interface is already declared in our include files and will be attached as appendix to this document.
5.1.1. Encapsulator

This component is in charge of the whole message encapsulation and decapsulation. Before any message is sent it will go through this component for encryption or decryption and building layers.

5.1.1.1. Crypto++

This is a huge subcomponent which is used for the encryption purposes. We will wrap it in our own class for easier use and readability.
5.1.2. CenterCommunicator

This component is in charge of communication with the center. It will be used in short sessions with the center such as registering, receiving other agents etc. The other functionality this module is going to expose is sending a message (already encapsulated) to a specified address.
5.1.3. RecieveMessageThread

This component will run in a different thread and is in charge of receiving messages from other agents. The received messages will be sent to the main for passing them on to the requested address according to protocol.
5.1.4. Main

The main is in charge of all GUI activities with the software user. It will expose the other agents list, the send and reply message dialog, as well as invoke methods such as receiving an updated agents list. This module will also initialize all other modules on startup.

5.1.4.1. ThreadSafeQueue

This subcomponent is the queue which will hold messages arriving from other agents. ReceiveMessageThread is going to fill it with messages while main will process all received messages and forward them to the desired destination without the user being aware of that.
5.2. Component Flow

5.2.1. Main loop / Events

Main loop will consist of:

· Get other agents list from center every X seconds.

· On received message from other agent

· Pass it to requested address.

· Show on screen incase we are the final address.

· Let our user send messages to different agents.
5.2.2. Startup / shut down process

On startup, main will construct Encapsulator for creating keys. Then the other two components are going to be constructed. Destructor will send unregister to server just before the components destructor will be called.
5.2.3. Threads and synchronization

Besides main thread there is only one thread in the system, that is the RecieveMessageThread. This thread will be initialized on startup. The purpose of this thread is receiving messages from different agents and passing it to the main thread. Each time a message is received the thread will push the new information into the thread safe queue, and notify main by sending a window message to it.

6. Data Model

All our data models are defined in the include file "types.h" will be appended on the end of this document as well.
7. Interfaces

7.1. System Interface

Our interface to the center is agreed and also defined in the include file "types.h".

· Address data:

	IP
	PORT

	4 bytes
	2 bytes

· Agent data:

	Address data
	Public key
	Nickname

	See above
	220 bytes
	12 bytes

· Server’s parameters data

	Length of path
	Global time
	Tick time
	Keep-alive time

	4 bytes
	4 bytes
	4 bytes
	4 bytes

· Format get-list request from agent:

	Magic
	Header
	Agent data

	0xAAEF01AA
	0x33
	See above

	4 bytes
	1 byte
	

· Format get-list reply from center (two answers):

	Magic
	Header
	Parameters data

	0xAAEF01AA
	0x44
	See above

	4 bytes
	1 byte
	

	Magic
	Header
	Number of agents
	Agents data

	0xAAEF01AA
	0x33
	
	See above

	4 bytes
	1 byte
	4 bytes
	

· Format quit request from client:

	Magic
	Header
	Address data

	0xAAEF01AA
	0xFF
	See above

	4 bytes
	1 byte
	

- No reply from center
8. User interface

· Initial login screen, letting the user fill out his nick name.

· Main screen

· List of active agents that you can send messages to.

· Refresh agent list button.

· Send Message Dialog

· Received Message Popup

· Reply Message Dialog
9. Testing

9.1. Classes of tests

· Unit testing to each of our units

· Stubs are going to be created so we can start testing without center integration.

· Since the trouble of testing GUI applications all the GUI is going to be made simple and tested manually.
10. Appendix – Include Files
types.html
Encapsulator.html
CenterCommunicator.html
RecieveMessageThread.html
W:\Mine\P2P\HLD.doc
By Dotan on Monday, November 25, 2002
Page 3

