
Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-1

Work in progress: Courses dedicated to the

development of logical and algorithmic thinking

Orna Muller, and Amir Rubinstein
ORT Braude College of Engineering, Israel, ornamu@braude.ac.il, amirrub@cs.technion.ac.il

Abstract - Undergraduate students often start their

academic course of studies with inadequate learning and

thinking skills. Our college has a policy of setting high

standards, while supporting students' learning in a

variety of ways. In this paper we present two distinctive

courses designed to aid students develop logical and

algorithmic thinking, essential for coping with software

engineering studies. The courses are taught

independently from but in parallel to Introduction to

Computer Science and Math courses of first semester.

Courses elaborate on algorithmic thinking, logical

reasoning and argumentation while explicating abstract

ideas which are often hidden in a loaded curriculum of

the disciplinary courses. At the same time, connections

are made to the application of the abstract ideas in the

disciplinary courses. Feedback from participants in the

two courses demonstrates an increased awareness and

appreciation of abstract ideas beyond mathematical and

programming knowledge, improved problem-solving

skills and deeper understanding of concepts and

principles.

Index Terms - Algorithmic problem-solving skills,

Argumentation, Logical reasoning.

MOTIVATION

Computer science and software engineering curricula require

high algorithmic and logical reasoning skills. Poor

algorithmic thinking results in difficulties in formulating

programmed solutions to algorithmic problems, in figuring

an idea for a solution, in recognizing similarities among

problems and in identifying familiar subtasks in a compound

problem [1]-[2]. Insufficient logical thinking abilities result

in poor and illogical argumentation processes, disconnected,

imprecise and ambiguous statements, and incorrectly used

terms [3]-[4]. Both algorithmic and logical thinking are

essential for handling abstractions in a precise manner,

which is a fundamental skill in computer science and

software engineering [5].

According to knowledge construction theories,

instructional design has a significant effect on the

development of the aforementioned thinking skills.

However, introductory math and programming courses

frequently emphasize mastering specific math content and a

programming language, while problem-solving processes are

dealt with in an unstructured and implicit manner.

LEARNING AND THINKING SKILLS COURSES

Several projects for the promotion of teaching and

learning skills are operated in our college. One project is a

mandatory Learning and Thinking Skills (LTS) courses for

all freshman students. LTS aims at improving students’

skills to cope with highly demanding engineering studies,

thereby decreasing failures, and lowering first year drop-out

rate. Students have to choose one of a variety of courses, two

of which are discussed here.

COURSES' RATIONALE AND DESIGN

We propose that algorithmic and logical thinking needs to be

introduced separately from math and computer science

courses, but in parallel to them. Limitations of transfer of

skills from one context to another are recognized [6]-[7];

therefore, Introduction to Computer Science (CS1) and

Calculus and Discrete Mathematics are taught in the same

semester as the LTS courses. Consequently, connections and

the implementation of ideas are constantly made.

Courses' planning includes a process of mapping and

defining the skills that each course intends to develop and

the instruction methodologies most suitable for supporting

the acquisition of those skills.

The Algorithmic Problem-Solving Skills (APSS) course

introduces generic "expert" solutions to recurring

algorithmic problems (such as: Searching for an Item or

Finding an Extreme Value in a List), and a well-planned

selection of problems in different contexts are analyzed and

solved (in pseudo-code). Issues such as generalization and

abstraction, analogical reasoning, problem decomposition

and recursive thinking are discussed and elaborated.

APSS course development was motivated by positive

results of previous research on teaching similar contents to

highly capable high-school students, indicating an

improvement in students' ability to develop correct, efficient,

and elegant algorithms [8]-[9].

Course setting is mostly based on workshop activities,

such as comparing different solutions to a problem,

categorizing problems, composing analogical problems to a

given one, abstracting a prototyped solution out of several

analogical problems, identifying and naming subtasks, and

efficiency and elegance of algorithms. The APSS course

emphasizes reflection on thinking and problem-solving

processes, analyzing common difficulties and verbalization

of ideas.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-2

The Logical Thinking and Argumentation (LTAA) course

has two main goals: 1) to develop logical and precise

thinking, and 2) to enhance students' skills in formal

argumentation techniques. The primary theme of proof and

disproof is always in the spot-light. Among the topics

introduced are basic propositional and predicate logics (with

emphasis on ambiguity of statements, evaluating their truth

or falsity, etc.), and different proof techniques of existential

and universal statements (direct, indirect, by contradiction,

constructive, non-constructive, induction, etc.).

The course aims at exposing the existing reasoning

schemas students have, acknowledging explicitly some of

the differences between mathematical logic and the logic

used in everyday life, and then allowing incorporation of

new schemas. Topics are taught not too formally, subtle

issues are discussed to enhance students' awareness of them,

and raising difficulties and examples for discussion is

encouraged (for a comprehensive discussion of the

motivation for such a course see [3]).

METHODOLOGY

The LTAA is taught in college for the second time, and the

APSS is taught for the fourth time. Reflective written

questionnaires were presented to the students at the end of

each course (twice in the APSS and once in the LTAA

course). The questionnaires which consist of open questions,

allow us to learn about students’ attitudes regarding the

influence of the course on their problem-solving skills, and

changes in their perception of problem solving in general.

Altogether 85 students answered the questionnaire that

was administered at the end of the APSS course. Students

were asked to reflect on their experience and give their

opinion regarding: (a) the main skills they acquired in the

course; (b) the content and structure of the course; and (c)

the desirable relationship between this course and the CS1

course (either to keep the courses separated, to take one

before the other, or to unite the courses). Analysis of

answers revealed several main categories of repeated ideas

and comments.

20 students either answered the questionnaire given at the

end of the LTAA course, or submitted a final paper in which

they were requested to present the course rationale in their

eyes, and give personal feedback. The issues students were

asked to reflect on were: (a) the effect LTAA on their

difficulties in other courses; (b) the content and structure of

the course.

STUDENTS' PERCEPTIONS AND FEEDBACK

Preliminary analysis of students' answers in APSS discloses

an increased confidence in approaching and analyzing novel

and compound problems. Students mentioned skills they

have acquired related to analogical reasoning, such as, the

ability to see structural similarities between problems.

Students' answers reflect on their ability to distinguish

between the two major levels of problem solving: the

abstract level (i.e. problem analysis and solution design) and

the concrete level (i.e. writing code and running programs),

and the importance of "planning before implementing".

Students expressed their realization of the importance of

learning theoretical and abstract aspects of problem solving

beyond programming language.

Almost all students, even those with previous experience

in programming, mentioned the contribution of the course to

broadening their repertoire of algorithmic ideas, especially

ideas that lead to clear, straightforward, elegant and efficient

algorithm. Many students ascribed a major contribution to

the course design that apparently promoted their assimilation

of ideas; for example, students have mentioned dividing the

course into themes and being exposed to several examples

for each type of problem/theme as mostly helpful in utilizing

ideas later on, in new contexts.

Since LTAA is being taught in our college for the second

time, we have relatively few impressions at the moment. In

general, students report improvement in their confidence in

the rationality of logical argumentations. Many of them feel

that they are more aware today of vague statements made by

themselves or others, and therefore can make an effort to

avoid them when dealing with argumentation of abstract

entities. Some also find proofs they encounter "more

familiar" and less threatening because their structure now

seems logical to them.

Another feedback mentioned throughout the semester by

many was that in this course there was time and legitimacy

to expose, argue about and iron out subtle logical issues,

which caused difficulties in other first year courses they took

(e.g.: the fact that in some universal statements the "for all"

quantifier is omitted, the right way to disprove an 'if a then

b' statement).

This feedback implies that an efficient introductory unit

that explicates the principles of logical reasoning can bridge

between natural, informal everyday verbal expression, and

problems encountered in science and engineering.

FUTURE WORK

In order to evaluate the effect of the courses, further research

plans include a comparison between the quality of solutions

to problems in written exams and interviews, of students

who have participated in one or the two courses, and of

students who did not participate in any of them. Aspects

such as the following will be inspected: correctness and

efficiency of solutions, design of solutions, preciseness and

clearness in expression of ideas and avoidance of common

logical obstacles.

Because of the growing interest in this type of courses in

other engineering departments in our institution, a deeper

insight on the potential contribution of the courses may help

in designing similar courses suited for other disciplines.

REFERENCES

[1] Deek, F.P., & McHugh, J. 2000. "Problem-solving

methodologies and the development of critical thinking

skills." Journal of Computer Science Education, 14(1-

2), 6-12.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-3

[2] Robins, A., Rountree, J., & Rountree, N. 2003.

"Learning and teaching programming: a review and

discussion." Computer Science Education, 13(2), 137-

172.

[3] Epp, Susanna S. December 2003. "The role of logic in

teaching proof." American Mathematical Monthly, 110

(10), 886-899.

[4] Selden A., Selden J. 2003. "Validations of proofs

considered as texts: Can undergraduates tell whether an

argument proves a theorem?" Journal for Research in

Mathematics Education, 34(1) 4-36.

[5] Devlin, K. 2003. "Why universities require computer

science students to take math." Communications of the

ACM, September 2003, 37-39

[6] Bassok, M. 2003. "Analogical transfer in problem

solving." In Davidson, J.E. and Sternberg, R.J. (Eds.),

The Psychology of Problem Solving. Cambridge

University Press.

[7] Mayer, R.E., & Wittrock, M.C. 1996. "Problem-solving

transfer." In D.C. Berliner & R.C. Calfee (Eds.),

Handbook of Educational Psychology, New York:

Macmillan.

[8] Muller, O. 2005. "Pattern oriented instruction and the

enhancement of analogical reasoning." Proceedings of

the 1st International Computing Education Research

Workshop (ICER), Seattle, Washington, 57-67.

[9] Muller, O. & Haberman, B. 2008. "Supporting

abstraction processes in problem solving through

pattern-oriented-instruction." Computer Science

Education, 18(3), 187-212.

AUTHOR INFORMATION

Orna Miller, Head of Teaching Studies department and Teaching &

Learning Center at Ort Braude College of Engineering, Israel
ornamu@braude.ac.il

Amir Rubinstein, Lecturer at Ort Braude College of Engineering,

and PhD candidate at Tel Aviv University, Israel,
amirrub@cs.technion.ac.il

