
-85-

Automatic Indention Versus Program Formatting

Amiram Yehudai
Computer Science Division

Department of Mathematical Sciences
Tel-Aviv University
Tel-Aviv~ ISRAEL

Indention has been widely recognized as an aid to improve
program readability [i]. Various different schemes for
indention have been proposed recently (see e.g. [2,3,4] and
some of the papers cited in them); preprocessors for them have
been written and some compilers produce their listing in an
indented layout.

In [3] it is argued that indention is a matter of style.
It is therefore not surprising that no indention scheme has
gained overwhelming acceptance by the programming community,
even if we restrict ourselves to Pascal users.

The debate about what is a good indention scheme can be
fruitful only if people do not aim at finding one scheme that
will become a standard. As is advocated in [2], we should
be able to deviate from our formal rules of layout for purpose
of readability. Therefore the thought that eventually every
program will go through one accepted preprocessor and come
out looking right cannot be accepted.

Since indention reflects the programmer's style, he or
she should choose the indention scheme. Moreover, it is not
clear that any automated indention scheme will be adequate,
as I may choose different ways ±o lay out the same construct
in different parts of my program.

A case in point is an if-then-else statement.
the following two program segments.

Consider

segment i

if x=y
then action i

else if x+y<2*z
then action 2

else if x+y+z=10
then action 3

else action 4;

-86-

segment 2

if x=y
then if x<z

then if

else if

else if x<y

z<u

then action ili
else action 112
X< U

then action 121
else action 122

then action 21
else action 22 ;

Note how the different indention schemes reflect the
different roles of the if-then-else constructs. One may argue

that if we had an elseif keyword [5] the first segment would
use it and elseif may then use an indention scheme other than
that of else and if. This would not solve the problem for the
last else in that segment. Another solution might be to have
a guarded command construct [6] that would let us write
segment i without using if-then-else.

These solutions, and others, do not address the general
problem. In Pascal, and in fact in any language, no matter
how rich in language constructs, there will be different ways
to use each construct. It would be impossible for an indention
program to understand all these different styles, even if it
actually parses the program.

Rather than force programmers into one scheme of indention,
I propose that programmers be encouraged to indent their pro-
grams with the help of a program formatter. A program formatter
(such as Spruce [7]) provides the user with various simple
directives that may be inserted (as comments) into the program
to dynamically set some of the indention parameters.

In Spruce one can direct the formatter to collect more
than one statement per line, in certain parts of the program.
One can change the indent tab, making it small where code is
heavily nested etc.

It may be desirable to include in such a system the ability
to redefine indention schemes for various language constructs,
although these macro definitions will make both use and im-
plementation of the formatter more complex.

In conclusion we argue that programmers be encouraged to
indent their programs to reflect their own style. Like authors
of any other type of text they should be provided with a

-87-

mechanism to conveniently format their text according to their
own style, and not forced into one scheme of indention.

We hope the flood of proposed indention systems will be
followed by suggested program formatters that will gain recog-
nition and accepted as essential software development tools.

i.

.

.

.

S.

.

.

References

Zelkowitz, M.V. "Perspectives in Software Engineering",
Computing Surveys 10:2 (June 1978), 197-216.

Grogons, P. "On Layout, Identifiers and Semicolons in
Pascal Programs",
SIGPLAN Notices 14:4 (April 1979), 35-40.

Bond, R. "Another note on Pascal Indention",
SIGPLAN Notices 14:12 (December 1979), 47-49.

Gustafson, G.G. "Some Practical Experiences Formatting
Pascal Programs", SIGPLAN Notices 14:9 (September 1979)
42-49.

Preliminary ADA Reference Manual, SIGPLAN Notices 14:6
(June 1979).

Dijkstra, E.W. "Guarded Commands, Nondeterminism, and
Formal Derivation of Programs", Comm. ACM 18:8
(August 1975), 453-457.

Spruce, a Pascal Program formatter, M.N. Condict,
R.L. Marcus and A. Mickel, University Computer Center,
University of M~nnesota. Included in Pascal 6000 Release 3.

