Information Technology and Intelligent Transportation: A Marriage Made in Heaven

Ouri Wolfson
University of Illinois
Chicago
wolfson@uic.edu
The Problem

• Safety:
 – 43,000 deaths per year in the USA;
 – 3 million+ accidents;
 – $250+ billion cost to the economy

• Congestion:
 – 2.9 billion gals of fuel wasted per year;
 – $78 billion cost to the economy;
 – 4.2 billion hours extra travel every year

• Environmental:
 – > 50% of hazardous air pollutants in U.S.,
 – up to 90% of the carbon monoxide in urban air
Motorization Growth: Road Vehicle Populations by Region, 1996 and 2020

Source: EIA, International Energy Outlook 1999
Traditional approach to address problem

- construct more highways/roadways
- Greater investment in public “mass” transit.
Information Technology impact on society

• Impact on economy
 – Financial industry
 – Insurance industry
 – Entertainment industry (games)
 – Utilities

• Impact on science and engineering
 – Biology (bioinformatics, human genome project)
 – Environmental science (weather prediction)
 – High energy physics
 – CAD/CAM
 – Operations research
 – Mathematics
IT impact on Transportation

- Car navigation systems, web-routing
IT impact on Transportation

- Car navigation systems, web-routing
- Traffic information systems
IT impact on Transportation

• Car navigation systems, web-routing
• Traffic information systems
• Autonomous/assisted driving
 – sponsored by military
 – Successful in areas W/O traffic
IT impact on Transportation

- Car navigation systems, web-routing
- Traffic information systems
- Autonomous/assisted driving
 - sponsored by mainly by dod
 - Successful in areas W/O traffic
- Fleet management software
Why?

- Distributed/mobile system of unprecedented scale
- Incentive mechanisms / business models
Outline

• Introduction – the problem

• Vehicular Infrastructure Integration (VII) Initiative

• Graduate Program in Computational Transportation Science

• Conductive IT trends
Intelligent Transportation Systems

- Increase transportation system
 - Safety
 - Efficiency
- With the use of
 - electronics and sensors
 - communications
 - information systems
Vehicle Infrastructure Integration (VII): A Federal Initiative

• Vision
 – Information about all roads, all the time
 • To control center
 • To individual vehicles
 – To enable a broad range of safety and mobility services

• Approach: Convene a “VII Coalition”—
 – auto manufacturers,
 – state transportation authorities,
 – USDOT
Application examples

• Safety
 – Vehicle in front has a malfunctioning brake light
 – Vehicle is about to run a red light
 – Patch of ice at milepost 305
 – Vehicle 100 meters ahead has suddenly stopped
Application examples (cont.)

- Improve efficiency/convenience/mobility:
 - What is the average speed a mile ahead of me?
 - Are there any accidents ahead?
 - What parking slots are available around me?
 - Taxi cab: what customers around me need service?
 - Customer: What Taxi cabs are available around me?
 - Cab/ride sharing opportunities
 - During the past year, how many times was bus#5 late by more than 10 minutes at station 20, or at some station
Outline

• Introduction – the problem

• Vehicular Infrastructure Integration (VII) Initiative

• Graduate Program in Computational Transportation Science

• Conductive IT trends
IGERT Ph.D. program in Computational Transportation Science

- Funded by the National Science Foundation ($3M+)
- Will train about 30 Scientists
 - Will develop novel classes of applications
- Colleges: engineering, business, urban planning
VII +

– Traveler/pedestrian focus
 • What Taxi cabs are available around me? (pedestrian)

– Non real-time issues
 • Query-language: During the past year, how many times was a bus on route #5 late by more than 10 minutes at some station (given gps traces)
 • Visualize accident based on sensors

– Data Management issues (above communication)
 • Parking slots (discovery, auctions)
Sample Research Problems

Platform to develop VII applications

Traffic simulations from perspective of computer science – computational problems, complexity, parallelization

Realistic/practical simulation testbed for purpose of evaluating VII algorithms

Discovery of novel VII applications

Human/social aspects of VII deployment

Integrating methodologies from the 2 fields

Human Computer Interaction – driving simulators
Research Issues in Data Management and Communication

- Data modeling and Uncertainty Management
- Data mining
- Wireless Networking
- Mobile P2P
- Security
Data Modeling

– Basic construct **trajectory**: location = f(time)
– Novel built-in mechanisms for
 • trajectory approximation
 • trajectory matching
 • trajectory aggregation
 • compression of spatial-temporal information
 • aging of spatial-temporal information
 • Location prediction
– Encapsulate in a trajectory data-blade
Uncertainty/imprecision Management

• Innovative approach: Optimize the tradeoff cost/imprecision

• Linguistic approach:
 – retrieve the average speed with 30% confidence
Research Thrusts

• Data Management and communication

• Software tools and services

• Human factors and sociological issues
 – Human-computer interaction (multimodal)
 – Privacy (particularly location information)
 – Socio-economic issues (e.g. air-quality implications of adaptive speed limits)
Prototype
ITA

• Intelligent traveler assistant —
 — on handheld computers

 — networked to
 • Traffic information center
 • Neighboring vehicles

 — plan multi-modal routes for its user
ITA modes

• Multi-modal trip planning
 – Possible optimization criteria: cost, time, predictability

• Trip execution (plan adjustment)
 – taxi/ride-sharing opportunities
Trip execution experiment

• 20 vehicles with ITA’s receiving sensor information in real-time

• demonstrate simple query processing in a mobile environment
Main differences from other transportation centers

• Focus on Computer Science and IT

• Focus on traveler rather than vehicular technology

• Focus on applications above communication layer
Outline

• Introduction – the problem

• Vehicular Infrastructure Integration (VII) Initiative

• Graduate Program in Computational Transportation Science

• Conducive IT trends
IT trends => Transportation

• Wireless networking
• Mobile computing
 – Fault tolerance, connectivity, longevity
 – Resource management
 – Programming paradigms (randomization)
• Information systems:
 – Spatial-temporal data management
 – Moving object databases
• Sensor networks
• Positioning technologies (GPS, cellular, anchor/less)
• Computer vision
 – Scene understanding (what the operator sees, and doesn’t)
IT trends => Transportation (cont.)

- Context awareness
 - Computer is aware of profile, location, activity, biometric information of user

- GIS

- Human-computer interaction
 - Speech processing
 - Natural language processing
 - Effectiveness (present only information operator does not already know)
 - Multimodal interface

- Security, privacy, trust management
 - Maliciously creating havoc, self serving information
IT trends => Transportation

- Wireless networking
- Mobile computing
 - Fault tolerance, connectivity, longevity
 - Resource management
 - Programming paradigms (randomization)
- Information systems:
 - Spatial-temporal data management
 - Moving object databases
- Sensor networks
- Positioning technologies (GPS, cellular)
- Computer vision
 - Scene understanding (what the operator sees, and doesn’t)
Wireless networking

- Technologies differ in
 - Bandwidth, range/license, power consumption
- Long range: licensed spectrum
 - Cellular (4G, WiMAX)
- Short range: unlicensed spectrum
 - Wi-fi (100-200meters, up to 54mbps)
 - Bluetooth (2-10meters, 2Mbps)
 - Zigbee (low power, .25Mbps)
 - Ultra-Wide-Band (675Mbps)
Wireless networking architectures

- Infrastructure-based

- Ad hoc networks
 - Mobile ad hoc networks (MANET’s)
 - Vehicular ad hoc networks (VANET’s)

- Mesh networks – involving both, static and mobile nodes
Mobile Ad Hoc Networks

Network nodes are routers – **dynamic topology**

Short-range wireless technologies

Energy considerations

Main investor: dod
Vehicular Ad Hoc Networks

- Vehicles within transmission range can communicate
- Uses variants of 802.11 (Wi-fi)
- Dynamic topology, but constrained to road network
- No energy constraints
IT trends => Transportation

• Wireless networking
• **Mobile computing**
 – Fault tolerance, connectivity, longevity
 – Resource management
 – Programming paradigms (randomization)
• Information systems:
 – Spatial-temporal data management
 – Moving object databases
• Sensor networks
• Positioning technologies (GPS, cellular)
• Computer vision
 – Scene understanding (what the operator sees, and doesn’t)
Mobile computing

• Resource constraints on nodes (devices)
 – Power
 – Bandwidth
 – Memory
 – Small screen
 – Small keyboard
Mobile computing models

• Centralized information system
 • User interface
 • Minimizing communication
 • Data broadcasting
 • Disconnection

• Local Information system
 • Small footprint
 • Wireless update of local databases (disconnected operation)
 • Example: Real-time traffic updates of car navigation system

• Mobile P2P information system
 – Computing and data management in MANET/VANET without a central control point.
Centralized/Hierarchical model

Location Area A

$A - 1$

1. MSS
2. MSS
3. MSS

Central Database
$a - A$
Mobile P2P network
Technical Problems in Mobile P2P

• Data modeling –
 – lack of a common schema and naming conventions
 – sensor- and human-generated information
 – Semantic-web concepts (e.g. ontologies) become relevant

• Participation incentives for brokers
 – to achieve reasonable coverage

• Dynamic and adaptive use of fixed infrastructure

• Managing Heterogeneity
Mp2p vs. client-server

• Mp2p advantages
 – Zero cost
 • Unregulated communication
 • No central database to maintain
 – Independent of infrastructure
 – Higher reliability
 – Privacy preservation
 – Often higher speed

• Mp2p disadvantages
 – Weaker answer-completeness guarantees
 – Density requirements
IT trends => Transportation

• Wireless networking
• Mobile computing
 – Fault tolerance, connectivity, longevity
 – Resource management
 – Programming paradigms (randomization)
• Information systems:
 – Spatial-temporal data management
 – Moving object databases
• Sensor networks
• Positioning technologies (GPS, cellular)
• Computer vision
 – Scene understanding (what the operator sees, and doesn’t)
Spatio-temporal data management

Initially database systems managed symbolic information (inventory)

Spatio-temporal databases handle discrete and continuous changes

Moving Objects Databases: continuous change in location
Moving Objects Database Technology

Query/trigger examples:
- Send me message when helicopter in a given geographic area
- Trucks that will reach destination within 20 minutes
- Where is the closest ATM/restaurant/hospital
- Bus on line #5 late

Basis for:
- Infrastructure provided location-based-services
- Fleet management
IT trends => Transportation

• Wireless networking
• Mobile computing
 – Fault tolerance, connectivity, longevity
 – Resource management
 – Programming paradigms (randomization)
• Information systems:
 – Spatial-temporal data management
 – Moving object databases
• Sensor networks
• Positioning technologies (GPS, cellular)
• Computer vision
 – Scene understanding (what the operator sees, and doesn’t)
Sensor networks

– **Vehicular sensors:**
 - speed,
 - fuel,
 - cameras,
 - airbag,
 - anti-lock brakes

– **Infrastructure sensors:**
 - speed detectors on road,
 - parking slots,
 - traffic lights,
 - toll booth
• Sensor information processing
 – Mostly static sensors
 – Sensor fusion (ladar and camera)
 – Protocols for sensor networks
 – Detection/classification/tracking of phenomena (trajectory of a vehicle going through a sensor net; sensors detect, assemble trajectory)
 – Distributed control and actuation
That’s all Folks

- Transportation has big problems
- Small IT impact
- Vehicle Infrastructure integration
- Computational Transportation Science
- Enabling IT trends
 - Wireless networking
 - Mobile computing
 - Information systems:
 - Sensor networks
 - Other trends (computer vision, HCI, positioning)