

Boaz Rosenan
Dept. of Computer Science

The Open University of Israel

Adviser: Prof. David H. Lorenz

Language Oriented Programming
with Cedalion

Agenda

● Overview:
– Language Oriented Programming (LOP)

– LOP Languages

– Cedalion, as an LOP Language

● Case Study:
– DNA Microarray Design

Language Oriented Programming (LOP):
 Rethinking Software Development

● Traditional Thinking

– Designing our software
for a programming language.

● New Thinking

– Design programming languages
for our software.

● The Role of DSLs in LOP

– Implement them if you need to.
– Keep them focused and interoperable.

LOP: Middle Out

LOP: Middle Out

DSL Definition

LOP: Middle Out

DSL Definition

Sw. Implementation

LOP: Middle Out

DSL Implementation

DSL Definition

Sw. Implementation

LOP: Middle Out

Expressive

DSL Implementation

DSL Definition

Sw. Implementation

LOP: Middle Out

Concise

Expressive

DSL Implementation

DSL Definition

Sw. Implementation

LOP: Middle Out

Concise

Expressive

Reusable
DSL Implementation

DSL Definition

Sw. Implementation

State of the Art

State of the Art

 Language
Workbenches

● IDEs for developing
DSLs.

● Use External DSLs.
● Use Projectional-Editing

[Fowler05].
● DSLs: Easy to use; hard

to implement.
● Examples: MPS,

Intentional.

State of the Art

 Language
Workbenches

● IDEs for developing
DSLs.

● Use External DSLs.
● Use Projectional-Editing

[Fowler05].
● DSLs: Easy to use; hard

to implement.
● Examples: MPS,

Intentional.

Internal
DSLs

● Internal to a host
language.

● First used in Lisp in
the 1960s.

● DSLs: Easy to
implement; limited by
the host language.

State of the Art

 Language
Workbenches

● IDEs for developing
DSLs.

● Use External DSLs.
● Use Projectional-Editing

[Fowler05].
● DSLs: Easy to use; hard

to implement.
● Examples: MPS,

Intentional.

Internal
DSLs

● Internal to a host
language.

● First used in Lisp in
the 1960s.

● DSLs: Easy to
implement; limited by
the host language.

State of the Art

 Language
Workbenches

● IDEs for developing
DSLs.

● Use External DSLs.
● Use Projectional-Editing

[Fowler05].
● DSLs: Easy to use; hard

to implement.
● Examples: MPS,

Intentional.

Internal
DSLs

● Internal to a host
language.

● First used in Lisp in
the 1960s.

● DSLs: Easy to
implement; limited by
the host language.

LOP Languages:
Rethinking LOP

● LOP Languages

– Programming languages supporting LOP.
– Just like OOP languages support OOP.

● Definition

– An LOP Language is a programming
language that can host internal DSLs,
allows the definition and enforcement of
DSL schema, and features extensible
projectional-editing.

LOP Language Design Space

LOP Language Design Space

Internal
DSLs

LOP Language Design Space

Internal
DSLs

LOP Language Design Space

Internal
DSLs

DSL
Schema

LOP Language Design Space

Internal
DSLs

DSL
Schema

Projectional
Editing

LOP Language Design Space

Internal
DSLs

DSL
Schema

Projectional
Editing

LOP Language Design Space

Internal
DSLs

DSL
Schema

Projectional
Editing

Haskell

ModelTalk

Lisp

Ruby

Intentional
MPS

LOP Language Design Space

Internal
DSLs

DSL
Schema

Projectional
Editing

Haskell

ModelTalk

LOP
LanguagesLisp

Ruby

Intentional
MPS

Cedalion: An LOP Language

Cedalion standing on the
shoulders of Orion;
Nicolas Poussin, 1658

● Logic Programming Language
– Hosts internal DSLs

● Uses Projectional Editing
– As a way to provide syntactic freedom

● Statically Typed (Type Inference)
– As a way to define schema

● Open-source:
– http://cedalion.sf.net

file:///wiki/Nicolas_Poussin

Cedalion in Action

Cedalion in Action

DSL Definition

Cedalion in Action

DSL Definition

DSL Implementation

Cedalion in Action

DSL Definition

DSL Implementation

Sw. Implementation

Cedalion Case Studies

● BNF Grammar for Parsing + Evaluation.
● Functional Programming.
● Process Calculus (CCS) + Modal Logic

(HML).
● DNA Sequence Sets


< >[]P a b

::=

Related Work

● Language Oriented Programming

– [Ward, 1994] Language-oriented programming. Software-
Concepts and Tools, 15(4):147–161, 1994

– [Fowler, 2005] Language workbenches: The killer-app for
domain specific languages. 2005.

● Language Workbenches

– [Dmitriev, 2004] Language oriented programming: The next
programming paradigm. JetBrains onBoard, 1(2), 2004.

– [Simonyi, Christerson, and Clifford, 2006] Intentional
software. ACM SIGPLAN Notices, 41(10):451–464, 2006.

● Internal DSLs

– [Hudak, 1996] Building domain-specific embedded
languages. ACM Computing Surveys (CSUR), 28(4es),
1996.

Conclusion
● Contributions

– LOP Languages

– Cedalion

● Future Work
– Theory

● Further investigate the properties of LOP Languages.
● Prove Cedalion type-system correctness.

– Practice
● Make Cedalion “ready for prime-time”.
● Provide more validation by real life examples.

Case Study

DNA Sequence Sets
for

DNA Microarray Design

Joint work with Itai Beno,
Faculty of Biology,

Technion – Israel Institute of Technology

What is DNA?

● Deoxyribonucleic acid.
● A double-helix consisting

of nucleotides.
● Four types, abbreviated

A,T,C,G.
● Stores the “machine code”

of life.
● ~3GBase (~750MB) is the

size of the worlds most
amazing “software”...

DNA and Cancer Research

● DNA anomalies play a
significant role in the
formation of Cancer.

● Studying these anomalies is
critical in the search for
effective treatment for Cancer.

● Certain proteins which
participate in cancerous
processes interact with DNA.

● These interactions are of
extreme importance to this
field.

DNA Microarray

● Finding a sequence with certain
qualities requires multiple experiments.

● A DNA Microarray is a device
containing O(105) microscopic spots,
each containing a different DNA
sequence (multiple instances).

● Microarrays can be custom-made for
specific experiments.

● Biologists provide the manufacturer a
list of all sequences need to be
produced.

Case-Study Goals

● Produce a list of O(105) DNA sequences that
reflect the desired design.

● Do this “LOP Style”:
– Microarray specification is done by biologists

(non-programmers).

– These biologists should use a DSL developed
for this purpose.

– All “programming” should be restricted to the
DSL and its runtime environment, and should be
agnostic of the actual Microarray design.

Before Cedalion...

● The biologist performing this experiment
has a programming day-job...

● Programmed ~500 LOC in Java to express a
simple design.

✔ Runs fast (few seconds).

✗ This code must change to accommodate
any change to the microarray design.

With Cedalion...

● A DSL was provided to express sets of DNA
sequences.

● A microarray design can be defined using
sets of sequences, with a name and quantity
for each.

● A microarray design can be generated into
files containing all sequences in the set.

● A 30 LOC Perl-script decimates the
sequence files to form the desired output.

DSL for DNA Sequence Sets

● A/T/C/G: Singleton sets of a single
nucleotide.

● N:=A∪T∪C∪G
● X.Y: The set consisting of an element of X

concatenated to an element of Y.
● Xn: A singleton set containing the empty

sequence if n=0, or X.Xn-1 otherwise.
● Y=[X]: Evaluates to the members of X. Y is

bound to a singleton set containing that
member, e.g., Y=[N2].Y

DSL for DNA Sequence Sets

● Xi n v : The members of X in inverse order.
● Xc o n j : The members of X, with all

nucleotides replaced by their conjugates:
AT; CG.

● Xc o m p := (Xc o n j)i n v

A T C G

AT CG

3'

5'

5'

3'

Restricting a Set

● Double-stranded DNA is redundant.

● For each sequence S, S and Scomp represent the
same double-stranded DNA.

● restrict(X): Contains all members of X, taking only
the “smaller” of two sequences representing the
same DNA.

● uniformRestrict(X): Same as restrict(X), but taking
either the smaller of the greater, at coin-toss.

A T C G

AT CG

3'

5'

5'

3'

Generating a Microarray

● A microarray has a name (base file name)
and a list of sections.

● Each section consists of a name, a set of
sequences and a quantity – how many
sequences we wish to select.

● A context-menu-entry allows the generation
of the microarray files, containing all
possibilities.

● Running the Perl script in the target
directory creates the final, decimated files.

Exercise

● Build a microarray design.

● All sequences will start with ACCGGT and end
with TTTTT.

● The middle part consists of a sequence followed
by its conjugate.

● The basic sequence consists of the following:

– Experiment: A sequence of 5 bases, with either A or
T in the middle. Select 100.

– Control: A sequence of 5 bases, with either C or G
in the middle. Select 20.

Case-Study Results

● With some assistance, the biologist was
able to specify the microarray design using
Cedalion.

● The design was changed twice before
reaching the final version. Non of the
changes required “programming”.

● Unit-tests were used to assure that the
constant parts of the DNA sequences do not
contain “interesting” features.

Case-Study: Conclusion

● The microarray design produced by Cedalion was
submitted to the manufacturer.

● Pros:

✔ Specification was done by non-programmer.

✔ Modifications to the design were straight-forward.

● Cons:

✗ Runtime performance is bad: x10 to x100 slower
then the hand-written Java implementation (6
minutes for ~500,000 sequences).

Boaz Rosenan
Dept. of Computer Science

The Open University of Israel

brosenan@cslab.openu.ac.il
http://cedalion.sf.net

Thank You!

http://cedalion.sf.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

