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Abstract

The estimation of parametric global motion is one of the cornerstones of computer vision. Such

schemes are able to estimate various motion models (translation, rotation, affine, projective) with sub-

pixel accuracy. The parametric motion is computed using a first order Taylor expansions of the registered

images. But, it is limited to the estimation of small motions, and while large translations and rotations

can be coarsely estimated by Fourier domain algorithms, no such techniques exist for affine and projec-

tive motions. This paper offers two contributions: First, we improve both the convergence range and rate

using a second order Taylor expansion and show first order methods to be a degenerate case of the pro-

posed scheme. Second, we extend the scheme using a symmetrical formulation which further improves

the convergence properties. The results are verified by rigorous analysis and experimental trials.

1 Introduction

Image registration plays a vital role in many image processing and computer vision applications such as

optical flow computation [1, 2], tracking [3, 4, 5], video compression [6, 7], layered motion estimation

[8] , Nonparametric motion recognition [9] and 3D reconstruction [10] to name a few. A comprehensive

comparative survey by Barron et. al. [11] found the family ofgradient-based motion estimation methods

(GM), originally proposed by Horn and Schunck [12] and Lucasand Kanade [1], to perform especially well.

The aim of the GM scheme is to estimate the parameters vectorp associated with theparametric image
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registrationproblem: starting from pure global translation, rotation,affine, and projective motions. These

models have been used extensively and are directly computedusing image spatio-temporal derivatives and

coarse-to-fine estimation. They search for the parametric geometric transform that best minimizes the square

of differences between image intensities over the whole image. Several formulations of the gradient methods

were suggested. They differ in the way the motion parametersare updated [13]: either by incrementing the

motion parameters [1] or the warp matrix [14]. An updated comprehensive description of these methods

was given in [15].

The registration is computed by relating a pair of images having some overlap using a first order Taylor

series expansion. Each pixel in the common support contributes a linear constraint, denoted theconstant

brightness constraint. Thus, an over-constrained linear system is formulated yielding a robust estimate.

Gathering and solving all the equations associated with pixels in the common support, estimates theglobal

motionbetween the images [14].

Local motions denoted Optical Flow, are estimated by computing a vector field{pi,j} of motion parame-

ters, where each motion vectorpi,j corresponds to the motion of a small image patch. Such schemes enforce

a smoothness constraint on the computed motion field, and thevariational framework was shown to be the

state-of-the-art. Variational schemes formulate the Optical flow computation as a variational minimization

problem, which is solved via the solution of partial differential equations. Such techniques were applied in

[16] to the computation of piecewise parametric motion, where each image patch is in the order of 50-100

pixels. Bronx and Weickert [2] applied a second order variational approach to improve the accuracy and

robustness.

The smoothness constraint enforced by the variational schemes is inappropriate when the estimated

motion field is discontinuous, such as the one resulting formthe motion of multiple objects and their occlu-

sions. A possible solution is to apply robust statistical measures. Odobez and Bouthemy [17] implemented

such schemes using M-Estimators for correlation and differential based optic flow computation. Instead of

minimizing theL2 norm of the intensity discrepancies between the registeredimages, they minimize the M-

Estimator functional applied to the discrepancies. Sim andPark [18] applied both the least median squares

(LMS) the reweighed least squares (RLS) to the discrepancies and the estimated motion field. Thus, they
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were able to analyze noisy image sequences containing several (spatially) discontinuous motions.

The estimation of parametric global motion is the focal point of this work and has gained significant

attention in the computer vision community. As such schemesestimate a relatively small number of param-

eters (usually up to 8) based on a least squares formulation of the entire images, such schemes are robust

and can be applied to a wide range of applications related to image stitching [14] and mosaicing [19]. This

robustness was further used to estimate higher order parametric models that are able to register quadratic

surfaces [20] (12 parameters), estimate global nonlinear illumination changes [21] and barrel lenses distor-

tions [22]. A limited class of parametric motions was also applied to video compression within the MPEG4

video compression standard [7, 23]. The focal point in such works is to derive computationally efficient

schemes, where due to the high frame-rate used (15-25 framesper second) the estimated motion is assumed

to be small.

A critical implementation issue concerning the GM is their convergence when estimating large motions.

As the estimated motion grows, the convergence rate decreases and the GM may converge to a local min-

ima. Hence, GM algorithms are unable to estimate large motions and have to be bootstrapped [24, 25], for

instance, by the coarser and more robust Fourier schemes [26, 27]. But, while the estimation of translations

and rotations can be bootstrapped by Fourier based methods,there are no such reliable solutions for affine

and projective motions. For instance, [28, 29] use affine invariant texture descriptors to bootstrap wide basis

stereo.

We propose to improve the convergence properties of the GM algorithm using a second order Taylor

expansion of the registered images. We show that the convergence properties of the proposed algorithm are

superior to those of the regular GM for large and small motions. Convergence rates of3 and 3
2 are achieved

for small and large motions, respectively, compared to2 and1 for the regular GM. The improvement is rigor-

ously proven in two ways, first we analyze the convergence properties of non-linear optimization schemes,

proving that higher order schemes provide better convergence properties, and apply the results to image

registration. Second, we show that the GM is a degenerate, sub-optimal case of the proposed scheme.

Further improvement is achieved by combining the second order expansion with a symmetrical for-

mulation [30]. While no gradient based scheme (including ours) can guarantee global convergence, we
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show rigorously and experimentally that the proposed scheme achieves better convergence ranges than the

standard GM.

The paper is organized as follows: the optimization based GMapproach to image registration is pre-

sented in Section 2. We then introduce the third order (O3GM)and symmetric third order (O3GM) schemes

in Section 3. The convergence properties of these schemes are rigorously analyzed in Section 5, while ex-

perimental validation is given in Section 6. Concluding remarks and future work are discussed in Section

7.

2 Gradient methods based motion estimation

GM methodology [15] estimates the motion parametersp by minimizing the intensity discrepancies between

I1 andI2

p∗ = arg min
p

∑

(x1
i ,y1

i )∈S

(
I1

(
x1

i ,y
1
i

)
− I2

(
x2

i , y
2
i

))2
(2.1)

where

x2
i =f(x1

i , y
1
i ,p), (2.2)

y2
i =g(x1

i , y
1
i ,p),

S is the set of coordinates of pixels common toI1 andI2 in I1’s coordinates,p is the estimated parameters

vector andf andg represent the motion model. For instance, affine motion is given by

x2
i =p1x

1
i + p2y

1
i +p3, (2.3)

y2
i =p4x

1
i + p5y

1
i +p6

and the projective model is given by

x2
i =

p1x
1
i + p2y

1
i +p3

p7x
1
i + p8y

1
i + 1

, (2.4)

y2
i =

p4x
1
i + p5y

1
i +p6

p7x1
i + p8y1

i + 1
.
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In practice, solving Eq. (2.1) does not result in perfect intensity alignment due to relative intensity

changes, and non-corresponding pixels within the registered images. Next we follow the formulation of

[14, 31] and solve Eq. (2.1). The basic GM formulation and itsiterative refinement step are described

in Sections 2.1 and 2.2, respectively. These are embedded inthe multi-resolution, coarse-to-fine scheme,

which improves the convergence properties.

2.1 Basic GM formulation

Equation (2.1) is solved via a linearization scheme, based on a pixel-wise first order Taylor expansion ofI1

in terms ofI2 as a function of the parameter vectorp aroundp = 0

I1(x
1
i , y

1
i ) = I2(x

1
i , y

1
i ) +

NP∑

k=1

∂I2(x
1
i , y

1
i )

∂pk
pk +

1

2

NP∑

k=1,m=1

∂I2(x
1
i , y

1
i ,p̃)

∂pk∂pm
pkpm, p̃ ∈ [0,p] . (2.5)

I1(x
1
i , y

1
i ) andI2(x

1
i , y

1
i ) are thei’th corresponding pixel inI1 andI2. ∂I2(x1

i ,y1
i )

∂pk
is the partial derivative

with respect to the motion parameters, whose computation for the affine motion model is described in

Appendix B. The second term in the r.h.s of Eq. (2.5) is the Lagrange Remainder [32] of the first-order

Taylor approximation. As̃p is an element of a vectorial space,[0,p] is a segment and not an interval, where

0 is the zero vector.

As p̃ is unknown, Eq. (2.5) can not be solved forp. Instead, we neglect the Lagrange Remainder term

and solve forδp

I1(x
1
i , y

1
i ) = I2(x

1
i , y

1
i ) +

NP∑

k=1

∂I2(x
1
i , y

1
i )

∂pk
δpk. (2.6)

By gathering the pixel-wise equations we get the equation set

Hδp = It (2.7)

whereHi,j =
∂I2(x1

i ,y1
i )

∂pj
andIti

= I1

(
x1

i ,y
1
i

)
− I2(x

1
i ,y

1
i ). Equation (2.7) is solved using least squares

δp =
(
HTH

)−1
HT It. (2.8)
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2.2 Iterative solution of gradient methods

In general, due to the omission of the error term in Eq. (2.5)δp 6= p and Eq. (2.1) is solved iteratively. At

each iteration Eq. (2.6) is formulated based on the current estimate of the motion parameterspn.

Denote:

p0 an initial estimated solution of Eq. (2.1) given as input

pn the estimated solution aftern iterations

Then′th iteration of the iterative GM is given in Algorithm 1.

Algorithm 1 Then’th iteration of the iterative gradient methods

1: The input imageI2 is warped towardsI1 using the current estimatepn n ≥ 0 and it is stored iñI2. p0

is a given input.

2: I1 andĨ2 are used as input images to the procedure described in Section 2.1.

3: δp, the result of step 2 is used to update the solution

pn+1 = δp + pn n ≥ 0. (2.9)

4: The iterations are performed until at mostNmax iterations are completed or the translation parameters

(within δp) are smaller than a predetermined threshold.

In order to improve the convergence properties of the GM, theiterative process is embedded in a coarse-

to-fine multiscale formulation [8, 15].

3 Third order gradient methods

This section introduces the third order GM formulation (O3GM) which is integrated into the regular GM

scheme presented in Section 2. The O3GM replacesonly the basic GM step given in Section 2.1. The

iterative refinement (Section 2.2) and multiscale steps areleft intact. We rigorously show in Section 5 that

for nonlinear optimization problems, such as the GM, the higher the order of approximation, the better the

convergence rate and range. In particular, the registration of images related by large motions, results in large

parameters deviations. Thus, the approximation error grows, lowering the convergence rate down to the
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point of divergence.

The focal point of the proposed approach is to improve the estimation of large motions, which might

otherwise be impossible, by lowering the approximation error, and reduce the number of iterations needed

for convergence.

While one can use a higher order approximation than the second order one used by our approach, such

schemes will result in an increased computational complexity that might prove exhaustive.

The second order approximation results in a set of quadraticequations solved iteratively, whose solution

yields the refinement termδp. Thus, the proposed algorithm applies two iterative cycles: the first is identical

to Algorithm 1, while the second solves the quadratic equation set forδp. We show in Section 3.1 that the

GM corresponds to a degenerate and sub-optimal instance of the proposed O3GM.

Similar to the basic GM step (Section 2.1), the O3GM accepts as input two images,I1 and I2, that

are aligned as best as possible. It outputsδp, that is an estimate of the motion betweenI1 and I2. The

accumulation of the iterative refinements is handles by the iterative refinement (Section 2.2), the same way

as in the regular GM scheme.

Equation (2.1) is solved by expanding it in a second order Taylor series expansion

I1(x
1
i , y

1
i ) = I2(x

1
i , y

1
i ) +

Np∑

j=1

δpj
∂I2(x

1
i , y

1
i )

∂pj
+

1

2

Np∑

j,s=1

δpjδps
∂2I2(x

1
i , y

1
i )

∂pj∂ps
, (3.1)

and solving forδp. δp is a refinement of the current estimate of the motion. Thus,δp is substituted into

Eq. (2.9). Np is the number of motion parameters. For instance, for the translation motion modelδp =

(δx, δy)T , Np = 2, and we get

2∑

j,s=1

δpjδps
∂2I2(x

1
i , y

1
i )

∂pj∂ps
=

∂2I2(x
1
i , y

1
i )

∂x2
δx2 + 2

∂2I2(x
1
i , y

1
i )

∂y∂x
δyδx +

∂2I2(x
1
i , y

1
i )

∂y2
δy2. (3.2)

The first and second partial derivatives with respect to the motion parameters are computed using the

chain rule and their computation for the affine motion model is described in Appendix B. Equation (3.1) is

evaluated at each pixel common to the imagesI1 andI2, forming the quadratic equation set{ri}i=1,...,N

whereN is the size of the common area. Thus,ri is theith equation computed by substitutingI1(x
1
i , y

1
i )

andI2(x
1
i , y

1
i ) into Eq. (3.1).
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r1 (δp) =

Np∑

j=1

δpj
∂I2(x

1
1, y

1
1)

∂pj
+

1

2

Np∑

j,s=1

δpjδps
∂2I2(x

1
1, y

1
1)

∂pj∂ps
− It(x

1
1, y

1
1) (3.3)

...

rN (δp) =

Np∑

j=1

δpj
∂I2(x

1
N , y1

N )

∂pj
+

1

2

Np∑

j,s=1

δpjδps
∂2I2(x

1
N , y1

N )

∂pj∂ps
− It(x

1
N , y1

N )

where

It(x
1
i , y

1
i ) = I1(x

1
i , y

1
i ) − I2(x

1
i , y

1
i ).

Section 8 details the derivation of the equation set for translation estimation.

In first order GM schemes (Section 2.1), the imageI2 is approximated by a linear model, and the set

{ri}i=1,...,N is a set of linear equations. Thus, the refinement term of the motion parameters,δp, is computed

by linear least squares(Eq. (2.8)). In contrast, the O3GM derives a quadratic set ofequations (Eq. (3.3))

and the refinement of the motion parameters,δp is computed bynon-linear least-squares

δp = arg max
δp

∑

i

ri (δp)2 . (3.4)

Equation (3.4) is solved by iterative Newtonian methods [33, 34]. We applied the Gauss-Newton and New-

ton’s schemes that differ on the formulation of the Newtonian iterations. A single iteration of the Gauss-

Newton algorithm is given by

δp(k+1) = δp(k) −
(
JTJ

)−1
JT r, k = 0, .. (3.5)

while the Newton’s scheme’s iteration is given by

δp(k+1) = δp(k) −

(
JTJ +

N∑

i

Hiri

(
δp(k)

))−1

JTr. k = 0, .. (3.6)

r = (r1, . . . , rN )T , J is the Jacobian,Hi is the Hessian of an equationri andδp(k) is the solution at the

Newtonian iterationk, whereδp(0) = 0.
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The JacobianJ of {ri}i=1,...,N is given by

J =




∂I2(x1
1,y1

1)
∂p1

+
Np∑
s=1

δps
∂2I2(x1

1,y1
1)

∂p1∂ps
· · ·

∂I2(x1
1,y1

1)
∂pNp

+
Np∑
s=1

δps
∂2I2(x1

1,y1
1)

∂pNp∂ps

...
...

∂I2(x1
N

,y1
N

)
∂p1

+
Np∑
s=1

δps
∂2I2(x1

N
,y1

N
)

∂pj∂ps
· · ·

∂I2(x1
N

,y1
N

)
∂pNp

+
Np∑
s=1

δps
∂2I2(x1

N
,y1

N
)

∂p
Np

∂ps




. (3.7)

The first and second order partial derivatives ofI2 with respect to the motion parametersp, are computed

using the chain rule. Appendix B details their computation for the affine motion model. The HessianHi is

the Hessian matrix of the single equationri (see Eq. (3.3))

Hi =




∂2I2(x1
1
,y1

1
)

∂p2
1

∂2I2(x1
1
,y1

1
)

∂p1∂p2
· · ·

∂2I2(x1
1
,y1

1
)

∂p1∂pNp

∂2I2(x1
2
,y1

2
)

∂p2∂p1

∂2I2(x1
2
,y1

2
)

∂p2
2

∂2I2(x1
2
,y1

2
)

∂p2∂pNp

...
. . .

...

∂2I2(x1
N ,y1

N )
∂pNp∂p1

∂2I2(x1
N ,y1

N )
∂pNp∂p2

· · ·
∂2I2(x1

N ,y1
N )

∂p2
Np




. (3.8)

Since the quadratic equations set is given explicitly, the computation ofJ andHi is fast and accurate up to

machine precision. The scheme is summarized in Algorithm 2.

Algorithm 2 Third order gradient methods
1: Compute the first and second partial derivatives ofI2 with respect to the motion parameters.

2: Form the second order polynomial equation set{ri}i=1,...,N .

3: Compute the Hessian{Hi}i=1,...,N of {ri}i=1,...,N if Newton’s algorithm is to be used.

4: Setδp0 = 0.

5: for n = 0 to Nmax do

6: Compute the JacobianJ and evaluateri (δpn).

7: Either Eq. (3.5) or Eq. (3.6) are applied according to the optimization scheme used.

8: Stop the iterations if the translation parameters reach a predetermined threshold.

9: end for

10: Returnδpn.
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3.1 GM as a degenerate case of the O3GM

In this section we prove that the GM is a degenerate and sub-optimal instance of the O3GM. It is equivalent

to applying the O3GM using a single Gauss-Newton iteration (Nmax = 1 in Algorithm 2) with a zero initial

motion estimate.

We start by considering the GM formulation in Eq. (2.6), whose Jacobian is given by

JGM =




∂I2(x1
1
,y1

1
)

∂p1
· · ·

∂I2(x1
1
,y1

1
)

∂pNp

...
...

∂I2(x1
N

,y1
N

)
∂p1

· · ·
∂I2(x1

N
,y1

N
)

∂pNp




(3.9)

Comparing Eq. (3.9) toJO3GM , the Jacobian of the O3GM (Eq. (3.7)), we note that by settingδp = 0

we get

JGM = JO3GM

Thus, applying Eq. (3.5) once to solve the quadratic set withan initial estimateδp = 0, yields the same

result as solving Eq. (2.8) within the GM scheme. As one can apply more iterations and use Newton’s

scheme (Eq. (3.6)) to solve the quadratic equation, the GM isa degenerate and sub-optimal case of the

O3GM scheme.

4 Symmetric third order GM formulations

The symmetric GM (SGM) formulation was introduced in [30] toimprove the convergence properties of GM

schemes. It utilizes the symmetry of the image registrationproblem with respect to the motion parameters

p, to reduce the approximation error. The error reductions achieved by the O3GM and SGM are comple-

mentary, thus, we integrate both in a unified framework we call the Symmetric third order GM (SO3GM).

The image registration problem is symmetrically formulated using a parametric motion model defined byp

I2

(
x1

i ,y
1
i ,

p

2

)
= I1

(
x1

i ,y
1
i ,−

p

2

)
, (4.1)

10



Both sides of Eq. (4.1) are expanded using a second order Taylor expansion and neglecting the3rd order

error term

I1(x
1
i , y

1
i ) −

Np∑

j=1

εj

2

∂I1(x
1
i ,y

1
i )

∂pj
+

1

2

Np∑

j,s=1

εj

2

εs

2

∂2I1(x
1
i ,y

1
i )

∂pj∂ps

= I2

(
x1

i , y
1
i

)
+

Np∑

j=1

εj

2

∂I2(x
1
i , y

1
i )

∂pj
+

1

2

Np∑

j,s=1

εj

2

εs

2

∂2I2(x
1
i , y

1
i )

∂pj∂ps
(4.2)

whereNp is the number of motion parameters andε is the vector of motion parameters to be estimated.

The focal point of this formulation is that given the imagesI1 andI2 related by an unknown motionp,

both sides of Eq. (4.2) approximate an image corresponding to the middle point (in the parameters space),

which isδ1 = ±p
2 apart from both images. In contrast, the O3GM scheme used a single approximation over

the intervalδ2 = p. Recalling that the approximation error is related to‖δi‖
3, we get that both sides of Eq.

(4.2) are associated with an error of
(
‖p‖
2

)3
= ‖p‖3

8 and the overall error is bounded by‖p‖
3

4 compared to

‖p‖3 for the O3GM. Similar results were derived for the GM scheme in [30].

By reformulating Eq. (4.2) we get

I1(x
1
i , y

1
i ) = I2

(
x1

i , y
1
i

)
+

1

2

Np∑

j=1

δpj

(
∂I2(x

1
i , y

1
i )

∂pj
+

∂I1(x
1
i , y

1
i )

∂pj

)

+
1

8

Np∑

j,s=1

δpjδps

(
∂2I2(x

1
i , y

1
i )

∂pj∂ps
−

∂2I1(x
1
i ,y

1
i )

∂pj∂ps

)
. (4.3)

By constructing the above equation for all of the pixels in the common support betweenI1 andI2, we derive

a quadratic equation set that is solved by Algorithm 2 forδp.

5 Third-Order Convergence analysis

In this section we analyze the convergence properties of thenon-linear least squares scheme used in GM

based image registration. We formulate the optimization asa zero crossing problem solved by Taylor series

based approximations, and derive the corresponding convergence rate and range.
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Definition 5.1 (Least squares minimization) A vector functionf (p) : Rn → Rm is minimized in the

least squares sense with respect to the vectorP if

p∗ = arg min
P

f (p) = arg min
P

m∑
i=1

(ri (p))2 . (5.1)

If ri (p) is nonlinear with respect top, Eq. (5.1) is denoted the nonlinear minimization off with respect to

p.

Definition 5.2 (Iterative solution) An iterative solution of an optimization problem is given by

pn+1 = pn − δpn (5.2)

wherepn and δpn are the vector of parameters and the update term, respectively, computed at iterationn

while

εn = p∗ − pn (5.3)

is the parameters’ error at iterationn.

Definition 5.3 (Range of convergence)For an iterative optimization scheme, the range of convergence is

given by a scalarεmax > 0, such that for any vectorε such thatεmax > ‖ε‖, applying the iterative

optimization scheme decreases the value of the cost function given in Eq. (5.1),|εn‖ > ‖εn+1‖ and the

scheme converges to its global minimum.

Definition 5.4 (Small and Larger deviation) For an iterative minimization problem, a large deviationp is

characterized by‖f (p)‖ ≫ ‖f (p∗)‖. A small deviationp is in the vicinity of the solutionp∗, and we have

‖f (p)‖ = O (‖f (p∗)‖) .

Equation (5.1) is solved iteratively by approximatingf (p) at the zero crossing pointp∗ using a second-

order Taylor series expansion aroundpn

f (p∗) = f (pn) +

NP∑

k=1

∂f(pn)

∂pk
(εn)k +

1

2

NP∑

k1=1,k2=1

∂2f(pn)

∂pk1
∂pk2

(εn)k1
(εn)k2

+ R2 (pn, p̃, εn) . (5.4)
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whereεn is the estimation error in iterationn, NP is the dimension ofp andR2 (pk, p̃) is theLagrange

Remainder[32] of the Taylor series approximation given by

R2 (pn, p̃, εn) =
1

6

NP∑

k1=1,k2=1,k3=1

∂3f(p̃)

∂pk1
∂pk2

∂pk3

(εn)k1
(εn)k2 (εn)k3

, p̃ ∈ [0, εn] . (5.5)

As bothf (p∗) andR2 are unknown (p∗ is a minimum point, but one can not assume thatf (p∗) = 0),

Eq. (5.4) can not be solved directly. Hence we neglectR2 andf (p∗) and solve

0 = H (δpn) , f (pn) +

NP∑

k=1

∂f(pn)

∂pk
(δpn)k +

1

2

NP∑

k1=1,k2=1

∂2f(pn)

∂pk1
∂pk2

(δpn)k1
(δpn)k2

, (5.6)

in the least squares sense.δpn is the refinement term computed by the O3GM.

Recalling thatpn+1= pn−δpn, the right-hand-side of Eq. (5.6) is a truncated second-order Taylor

approximation off (pn+1) over the interval[pn,pn+1]. Thus,

f (pn+1) = H (δpn) + R2 (pn, p̃, δpn) , p̃ ∈ [0, δpn] (5.7)

and asH (δpn) = 0 (Eq. (5.6)), we get

‖f (pn+1)‖ = C3 ‖δpn‖
3 (5.8)

where

C3 =
1

6

∥∥∥∥∥∥

NP∑

k1=1,...,kT+1=1

∂3f(p̃)

∂pk1
∂pk2

∂pk3

∥∥∥∥∥∥
= O

(∥∥∥∥
∂3f

∂p3

∥∥∥∥
)

, p̃ ∈ [pn,pn+1] .

We continue to study the convergence properties for large and small deviations.

Lemma 5.1 The convergence rate of the second-order approximation scheme for large deviations is given

by ‖εn+1‖ =
√

C3

C2
‖εn‖

3/2, whereC2 and C3 are constants and large deviations are characterized by

‖f (p)‖ ≫ ‖f (p∗)‖ and‖εn‖ ≫ 0

PROOF. For large deviations‖f (p)‖ ≫ ‖f (p∗)‖, hence we can neglect the term‖f (p∗)‖ in Eq. (5.4).

Moreover, since‖εn‖ ≫ 0

∥∥∥∥∥∥

NP∑

k1=1,k2=1

∂2f(p̃)

∂pk1
∂pk2

(εn)k1
(εn)k2

∥∥∥∥∥∥
≫

∥∥∥∥∥

NP∑

k=1

∂f(pn)

∂pk
(εn)k

∥∥∥∥∥ (5.9)
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and thus, Eq. (5.4) is reduced to

|f (pn)| =

∥∥∥∥∥∥
1

2

NP∑

k1=1,k2=1

∂2f(p̃)

∂pk1
∂pk2

(εn)k1
(εn)k2

∥∥∥∥∥∥
= C2 ‖εn‖

2 , p̃ ∈ [0, εn] (5.10)

where

C2 =

∥∥∥∥∥∥
1

2

NP∑

k1=1,k2=1

∂2f(p̃)

∂pk1
∂pk2

∥∥∥∥∥∥
= O

(∥∥∥∥
∂2f

∂p2

∥∥∥∥
)

. (5.11)

Substituting Eqs. (5.8) and (5.10)

‖δpn‖ = 3

√
|f (pn+1)|

C3
=

3

√
C2 ‖εn+1‖

2

C3
= 3

√
C2

C3
‖εn+1‖

2

3 . (5.12)

By Eq. (5.3),εn+1 = εn − δpn, and as we are away from the solution‖εn+1‖ ≫ 0, thus

3

√
C2

C3
‖εn+1‖

2

3 = ‖δpn‖ ≤ ‖εn‖

and

‖εn+1‖ ≤

√
C3

C2
‖εn‖

3

2 . (5.13)

The ratioC3

C2
is given by

C3

C2
= O

(∥∥∥∥
∂3f

∂p3

∥∥∥∥
/∥∥∥∥

∂2f

∂p2

∥∥∥∥
)

. (5.14)

The smaller the ratioC3

C2
, the faster the convergence.C3 =

∥∥∥∂3f
∂p3

∥∥∥ is related to the approximation error of

the second-order Taylor expansion. Thus, the more accuratethe approximation the faster the convergence.

QED

Lemma 5.2 The convergence rate of the second-order approximation based scheme for small deviation is

given by‖εn+1‖ ≤ C3

C1 ‖εn‖
3, whereC1 andC3 are constants.

PROOF. For small deviations‖f (p)‖ → ‖f (p∗)‖ and‖εn‖ → 0, thus

‖εn‖ ≫ ‖εn‖
2 ,
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∥∥∥∥∥

NP∑

k=1

∂f(pn)

∂pk
(εn)k

∥∥∥∥∥≫

∥∥∥∥∥∥

NP∑

k1=1,k2=1

∂2f(p̃)

∂pk1
∂pk2

(εn)k1
(εn)k2

∥∥∥∥∥∥
(5.15)

and Eq. (5.4) is reduced to

|f (pn)| =

∥∥∥∥∥

NP∑

k=1

∂f(pn)

∂pk

∥∥∥∥∥ ‖εn‖ = C1 ‖εn‖ , p̃ ∈ (0, εn) (5.16)

where

C1 =

∥∥∥∥∥

NP∑

k=1

∂f(pn)

∂pk

∥∥∥∥∥ = O

(∥∥∥∥
∂f

∂p

∥∥∥∥
)

. (5.17)

Substituting Eqs. (5.8) and (5.16), we have that

‖δpn‖ 6 3

√
|f (pn+1)|

C3
= 3

√
C1 ‖εn+1‖

C3
= 3

√
C1

C3
‖εn+1‖

1

3 . (5.18)

By Eq. (5.3),εn+1 = εn + δpn, hence

0 6 ‖εn+1‖ = ‖εn‖ − ‖δpn‖ = ‖εn‖ −
3

√
C1

C3
‖εn+1‖

1

3 (5.19)

‖εn‖ ≥ 3

√
C1

C3
‖εn+1‖

1

3

and

C3

C1
‖εn‖

3 ≥ ‖εn+1‖ (5.20)

The ratioC3

C1
is given by

C3

C1
= O

(∥∥∥∥
∂3f

∂p3

∥∥∥∥
/∥∥∥∥

∂f

∂p

∥∥∥∥
)

(5.21)

Recalling that the error of the second order Taylor approximation is bounded by
∥∥∥∂3f

∂p3

∥∥∥ (see Eqs. (5.4)-

(5.5)), Eq. (5.21) takes an intuitive form - in the minimization of functions that are well approximated by a

second order expansion, we have
∥∥∥∂3f

∂p3

∥∥∥→ 0 and C3

C1
→ 0, thus speeding up the convergence. QED

Lemma 5.3 The convergence range of the second-order approximation based scheme is related to the en-

ergy of the high-order derivatives of the objective function f and therefore to the decay of its spectra in the

Fourier domain. This provides a measure of the performance of the second-order scheme given an objective

functionf .
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PROOF. The convergence rangeεmax is given by computing the errorεn, such that for any‖εn‖ > ‖εmax‖

applying the iterative step given, using Eq. (5.13), will result in an increase of the parameters error, instead

of its decrease

εmax ≤ ‖εn+1‖ =

√
C3

C2
‖εmax‖

3

2

and we get

C2

C3
≤ ‖εmax‖ . (5.22)

Equation (5.22) implies thatεmax is maximized asC3 → 0. This corresponds to using an approximation

whose order is higher than the order of the functionf . For instance, the solution of a quadratic equation set

using the second order approximation, will converge in a single iteration, usingany initial estimate.

Further insight can be derived by applying Parseval’s Theorem toC2 andC3. Thus,

C2 =

∥∥∥∥
∂2f

∂p2

∥∥∥∥ =
∥∥F (ω) ω2

∥∥ , (5.23)

and

C3 =

∥∥∥∥
∂3f

∂p3

∥∥∥∥ =
∥∥F (ω) ω3

∥∥ , (5.24)

and the ratioC2

C3
measures to the decay of the magnitude of Fourier transform of the image. Hence, a

smoother images will tend to have a smallerC3 coefficient, and a larger convergence range. In particular,

this ratio can be efficiently computed for a given image and asses the convergence rangeεmax. This analysis

also provides a justification to the common practice of smoothing the input images before applying the GM

registration. QED

For the sake of completeness, we summarize the convergence properties of the first-order GM scheme.

Such schemes apply a first order Taylor expansion off (p), and are commonly known as the Gauss-Newton

optimization algorithm [33, 34]. Its convergence properties are given in the following Lemma, while details

and rigorous analysis can be found in [30].

Lemma 5.4 The convergence process of the GM and SGM schemes can be divided to two distinct phases,

characterized by the deviation of the parametersp from their optimal valuep∗ and the convergence rate of
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the optimization scheme. Near the minimump → p∗, ‖εn‖ → 0, a quadratic convergence rate is achieved.

Away from the minimum, a slow linear convergence rate is achieved.

‖εn+1‖ ≤ CL
GM · ‖εn‖ + CS

GM · ‖εn‖
2

whereCS
GM andCL

GM are constants.

PROOF. The proof of the above Lemma was given in [30]. Similar results were derived in [34] for uncon-

strained Newton’s methods, where small and large deviations are referred to as thequadratically convergent

anddampedconvergence phases, respectively. QED

5.1 Symmetric third order GM convergence

The convergence properties of the SO3GM can be derived by considering Eq. (4.3), which defines the

derivatives off̂ , the objective function minimized by the SO3GM. Since the SO3GM uses the same order

of approximation as the O3GM, we get the same orders of convergence for both small and large deviations.

The difference lies in the ratio ofC3 andC2, the overall energy of the derivatives. Denote byC̃3, C̃2 and

C̃1 the corresponding derivatives norms for the SO3GM. We compare their values toC3, C2 andC1 related

by the O3GM, and show that the convergence rate is improved.

Using Eq. (4.3) we get that the norm of̃C2 is bounded by

C̃2 =
1

4

∥∥∥∥
∂2I2(x

1
i , y

1
i )

∂pj∂ps
−

∂2I1(x
1
i , y

1
i )

∂pj∂ps

∥∥∥∥ ≤
1

4

∥∥∥∥
∂2I2

∂p2

∥∥∥∥+
1

4

∥∥∥∥
∂2I1

∂p2

∥∥∥∥

=
1

2

∥∥∥∥
∂2I2

∂p2

∥∥∥∥ =
C2

2
.

For C̃3 andC̃1 we have

C̃3 =
1

8

∥∥∥∥∥
∂3I2

(
x1

i , y
1
i

)

∂pj∂ps∂pt
+

∂3I1

(
x1

i , y
1
i

)

∂pj∂ps∂pt

∥∥∥∥∥ ≤
1

8

∥∥∥∥
∂3I2

∂p3

∥∥∥∥+
1

8

∥∥∥∥
∂3I1

∂p3

∥∥∥∥

=
1

4

∥∥∥∥
∂3I2

∂p3

∥∥∥∥ =
C3

4
,

and
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C̃1 =
1

2

∥∥∥∥∥
∂I2(x

(2)
i ,y

(2)
i ,p)

∂pj
+

∂I1(x
(1)
i ,y

(1)
i )

∂pj

∥∥∥∥∥ ≤
1

2

∥∥∥∥
∂I2

∂p

∥∥∥∥+
1

2

∥∥∥∥
∂I2

∂p

∥∥∥∥

=

∥∥∥∥
∂I2

∂pj

∥∥∥∥ = C1.

Hence, we compute the convergence rates and ranges for the SO3GM. For large deviations we get

‖εn+1‖ ≤
C̃3

C̃2

‖εn‖
3

2 =
C3/4

C2/2
‖εn‖

3

2 =
1

2

C3

C2
‖εn‖

3

2 (5.25)

and for small deviations

‖εn+1‖ ≤
C̃3

C̃1

‖εn‖
3 =

C3/4

C1
‖εn‖

3 =
1

4

C3

C1
‖εn‖

3 (5.26)

Comparing these results to Eqs. (5.13) and (5.20) we see thatthe SO3GM allows better convergence

rates, especially for low deviations.

Next we show that the convergence rangeεSO3GM
max is also improved and by substituting̃C2 andC̃3 in

Eq. (5.22) we have

εSO3GM
max =

C̃2

C̃3

=
C2/2

C3/4
= 2

C2

C3
= 2εO3GM

max . (5.27)

6 Experimental Results

This section describes the performance of the proposed algorithms and verifies the convergence analysis

given in Section 5. The same implementations of theiterative refinementandmultiscale embeddingwere

used for the O3GM, SO3GM, SGM and GM algorithms. Thus, the only difference between the schemes

is thesingle iterationmodule. The translation and rotation simulations were conducted using theLenaand

Airfield images transformed by bilinear interpolation, while the affine and projective motion were tested

using real images. The images in Fig. 5 were taken by a photogrammetric aerial camera, while the images

in Fig. 7 were taken by a hand held 35mm camera. The GM algorithm was implemented according to

[15, 35] that are considered state-of-the-art. The first andsecond order derivatives were computed using the
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following central difference approximations

∂I(i,j)
∂x = 1

2 (I (i, j + 1) − I (i, j − 1)) ∂I(i,j)
∂y = 1

2 (I (i + 1, j) − I (i − 1, j))

∂2I(i,j)
∂x2 = 1

4 (I (i, j + 2) − 2I (i, j) + I (i, j − 2)) ∂2I(i,j)
∂y2 = 1

4 (I (i + 2, j) − 2I (i, j) + I (i − 2, j))

∂2I(i,j)
∂y∂x = ∂2I(i,j)

∂y∂x = 1
4 (I (i − 1, j − 1) − I (i − 1, j + 1) + I (i + 1, j − 1) + I (i + 1, j + 1)) .

In order to avoid spatiotemporal aliasing and allow accurate computation of the spatial derivatives, the

images were initially smoothed by a Gaussian filter with a bandwidth of σ = 11. The same filter was used

to construct the multiscale pyramid whose scales were 1 (original scale) and 1/3. The support of the filters

is larger than the one used in prior works [15, 35]. This allows us to better estimate the second order image

derivatives and also improves the convergence range of the regular GM scheme such as in [15, 35].

We used the upper-left image corner as the origin of axis. Thecommon support ofI1 and I2 was

computed in each iteration by applying the motion estimate to the bounding rectangular ofI2. Next, we

identify the intersection points between the bounding rectangles ofI1 and (the transformed)I2 and compute

the convex hull of their mutual support.

The focal point of the experiments in this section is to illustrate the improved convergence properties of

the proposed schemes. In order to asses the convergence properties (rate and range), the figures show the

alignment error (Eq. (6.1)) Vs. the number of iterations. Itwas shown in [30] that the convergence rate of

the alignment error and the motion parameters are the same.

The alignment error is given in terms of the mean squared error

Alignment Error =

√√√√
1

Nm

∑

(x1
i ,y1

i )∈S

(
I1

(
x1

i ,y
1
i

)
− I2(x1

i , y
1
i )
)2

(6.1)

whereNm = ‖S‖ is the number of common pixels.

The dimensions of the images used in the simulations is in theorder of 5122 pixels. In least squares

based optimization schemes, the larger the equation set, the better the robustness to noise and computational

accuracy. Thus, the larger the registered images, the more robust their registration by the GM and O3GM

schemes.

We empirically study the convergence properties in Section6.3, and compare the results to the rigorous

analysis presented in Section 5. Finally, as higher order derivatives are known to be sensitive to noise,
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(a) (b)

Figure 1: The test images used for evaluating the proposed scheme by recovering rotations and translations.

(a) Airfield. (b) Lena.

we asses the convergence of the proposed approaches in the presence of noise, and different interpolation

schemes in Section 6.4.

6.1 Rotation and translation estimation

We start by applying the proposed scheme to the estimation oftranslations and rotations. For that we used

the Lena and Airfield images shown in Fig. 1. These images wererotated around their center and translated.

Different registration schemes were applied to align the transformed replicas to the original images, using a

zero initial estimate of the motion.

First, we recovered small motions for which all of the alignment schemes converged. This allows us to

compare the convergence rates over the different schemes, and verify the analysis given in Lemmas 5.1 and

5.2. All of the schemes were applied using a single resolution scale. These results are presented in Figs. 2a

and 3a. For both images, the third order schemes (O3GM and SO3GM), outperformed the corresponding

standard schemes, GM and SGM, respectively.

We then studied the estimation larger motions in Figs. 2b and3b. There, we applied a resolution pyramid

to all schemes, as such pyramids are the common approach to improving the registration range of gradient

methods. In all of these instances, the O3GM converged significantly faster than the first order formulations

(GM, SGM), and was outperformed by the SO3GM, while being fivetimes faster than the regular GM.

The convergence of larger motions is presented in Fig. 4, where we significantly enlarged the motion
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Figure 2: Rotation and translation estimation results for the Airfield image. The image was rotated and

translated by(a) (θ = 5◦, δx = 20, δy = 20) . (b) (θ = 10◦, δx = 35, δy = 35). A zero initial estimate

of the motion was used. The second order formulations converged significantly faster than the first order

formulations. The SO3GM algorithm converged twice as fast as the O3GM algorithm.
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(b)

Figure 3: Registration results for theLena image. The image was rotated and translated by(a)

(θ = 5◦, δx = 20, δy = 20). (b) (θ = 10◦, δx = 20, δy = 20). A zero initial estimate of the motion was

used. The SO3GM converged significantly faster than the SGM.The other algorithms diverged.
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Figure 4: Registration results for large motions.(a) Airfield image rotated and translated by

(θ = 15◦, δx = 0, δy = 0). (b) Lenaimage rotated and translated by(θ = 20◦, δx = 0, δy = 0). A zero

initial estimate of the motion was used. In both cases the SO3GM converged significantly faster than the

O3GM, while the first-order schemes diverged.

magnitudes compared to Figs. 2 and 3. The O3GM and SO3GM schemes converged, while the first-order

GM and SGM diverged. This exemplifies the superiority of the second-order approach when dealing with

large motions. The registration accuracy of the O3GM and SO3GM that was ofO(10−15), for all motion

parameters.

6.2 Affine and projective motion estimation

The registration results of real images using the affine and projective motion models are given in Figs. 5

and 7, respectively. The initial estimate of the motion was given as a translation, computed by aligning the

X marks in both images. We intentionally chose an inaccurateinitial estimate, making the residual motion

(estimated by the various GM schemes) large. The same initial motion was used by all the different schemes.

For these real images, the final alignment error results fromthe lack of perfect matching, and the existence

of non corresponding (outlier) objects in both images.

In the affine case (Fig. 5), the O3GM outperformed the GM by converging twice as fast. Better con-
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vergence was achieved by the symmetric motion models (SGM and SO3GM) and the best convergence was

achieved by the SO3GM. The initial estimate (based on the translation between the X signs in Fig. 5) was

(δx, δy) = (231,−17) and the computed motion was

x2 = 1.0516x1 + 0.0708y1 + 217.5

y2 = 0.0058x1 + 0.9387y1 − 9.23.
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Figure 5: Registration results for affine motion. The initial estimate of the motion was given by marked by

the red X. The SO3GM converged 4 times faster than the GM and twice as fast as the O3GM and SGM.

In order to statistically asses the improvement achieved bythe O3GM, we computed a set of 1000

random affine motions and applied them to the Lena and Airfieldimages. The images were then registered

using the GM and O3GM schemes. As different affine motions result in different alignment errors and

convergence curves, we normalized these curves by computing the number of iterations needed to reach

certain error alignment ratios. These are the number of iterations needed to reduce the alignment error to a

particular percentage of the initial error. The error ratiois depicted by the x-axis of Fig. 6. Then, in order

to compare the GM and O3GM, we present in the average ratio of GM to O3GM iterations (y-axis) needed

to reach corresponding relative alignment errors. Similarto Fig. 5, the O3GM required less iterations than

the GM and the standard deviation was ofO
(
10−2

)
, proving that the improvement achieved by the O3GM

is statistically stable.
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Figure 6: Registration statistics for 1000 randomly generated affine motions. Random affine motions were

applied to the Lena (a) and Airfield (b) images. We compare thenumber of GM and O3GM iterations needed

to decrease the alignment error to a particular ratio, and the corresponding standard deviation. The x-axis

shows the alignment error ratio, while the y-axis depicts the ratio of GM iterations to O3GM iterations

needed to achieve a particular error ratio.

The results of registering the panoramic images using a projective motion model are presented in Fig. 7.

These images have a significantly different brightness due to the auto-exposure of the camera. We left the

brightness as is, to make the registration more difficult. The initial estimate was(δx, δy) = (583,−43) and

the computed motion was

x2 =
0.6295x1 + 0.0021y1 + 596.6587

−4 · 10−4x1 + 1.1 · 10−5y1 + 1

y2 =
−0.1038x1 + 0.9324y1 − 25.3759

−4 · 10−4x1 + 1.1 · 10−5y1 + 1.

The timing results for the affine case are given in Table 1, where the measurement were taken on a

2.8 GHz PC computer and the algorithms were implemented in non-optimized C++. For these high-order

models, the complexity of the proposed algorithms is higherthan the computational complexity of the GM

and SGM. Yet, it is useful for estimating large motions wherethe GM and SGM might diverge.
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Figure 7: Registration results for projective motion. The initial estimate of the motion was given by the red

X. The SGM converged better than the O3GM while the SO3GM showed the best convergence properties.

Iteration# Total timing [s] Average iteration timing [s]

GM 22 0.8 0.036

SGM 17 1.1 0.064

O3GM 17 1.2 0.070

SO3GM 12 1.4 0.117

Table 1: Timing results for the affine registration given in Fig. 5

6.3 Convergence analysis verification

The convergence analysis given in Lemmas 5.1 and 5.2, suggests that the convergence ratios,C3

C2
andC3

C1
, for

the large and small motions, respectively, are related to the energy of the image derivatives. Equivalently,

C3

C2
and C3

C1
are related to the spectral content of the input images (Lemma 5.3).

In this section, we study this relationship empirically, byvarying the derivatives/spectral content of the

images in Fig. 1, by smoothing them with Gaussian low-pass filters. For each image, several smoothed

replicas, corresponding to standard deviations ofσ = 7, 11, 15, were computed. These images were then

aligned using the O3GM and GM schemes. Figures 8a and 8b show the convergence curves over the different

image smoothing factors, using alogarithmicy-axis. Thus, Eqs. (5.13) and (5.20) become
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log ‖εn+1‖ = log

√
C3

C2
+

3

2
log ‖εn‖ . (6.2)

and

log ‖εn+1‖ = log
C3

C1
+ 3 log ‖εn‖ , (6.3)

respectively. Thus, we are able to study the different convergence phases, and the dependence if the coeffi-

cientsC3

C2
and C3

C1
on the smoothness of the input images.

A few conclusions can be drawn from Fig. 8: first, the convergence is indeed made of two phases,

starting with a low slope (32 and1 for the O3GM and GM, respectively) and then turning into a steeper

slope (3 and2 for the O3GM and GM, respectively). Second, by comparing theconvergence curves for a

given image and scheme (say the O3GM), over the different smoothing factors, we notice that the curves

only differ by a vertical shift, while having the same slopes. This corroborates Lemma 5.3, that related the

spectral content of the input images to the coefficientsC3

C2
and C3

C1
, and not to the convergence rates (3

2 and

1). Last, we note that the O3GM and SGM exhibit similar slopes.Indeed, it was shown in [30], that the

SGM can achieve O3GM-like convergence for small motions.

6.4 Sensitivity to noise and interpolation errors

As higher order schemes are known to be sensitive to noise, wetested the robustness of the proposed scheme

to two typical noise sources in image registration. First, we considered the influence of White Gaussian

noise (WGN). WGN was added to both images in Fig. 5 withσ = 0, 30, 60. The GM and SGM schemes

were applied and the results are depicted in Fig. 9. The same initial motion was assumes as in the prior

section. Figures. 9a and 9b show Fig. 5a after adding WGN withσ = 30 andσ = 60, respectively. The

initial estimate of the motion, was chosen such that the residual motion was large. The convergence results

depicted in Fig. 9c, shows that the second-order approacheswere more stable than the GM in the presence

of noise for all noise levels. As before the SO3GM outperformed the other schemes.

Next we considered the errors induced by using different image interpolation schemes. Interpolation is

used in Step #1 of Algorithm 1, where at each iteration the current estimate of the motion is used to align
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Figure 8: The convergence of the O3GM and GM schemes with respect to the smoothness of the in-

put images. The images were smoothed with a Gaussian low-pass filter with a varying widthσ. (a)

Registration of the Airfield image(θ = 5◦, δx = 20, δy = 20). (b) Registration of the Lena image

(θ = 5◦, δx = 20, δy = 20). These images are shown in Fig. 1.

the images. Figure 10 depicts the results of applying the GM and O3GM to the same registration problem as

in Fig. 5, using bilinear, cubic and spline interpolation. The same registration parameters such as the initial

estimate, iterations number and multiscale pyramid were used in all of the simulations.

The results for the GM and O3GM are shown in Figs. 10a and 10b, respectively. For both schemes the

convergence properties are unchanged by the use of different interpolation schemes. We attribute that to the

following issues:

1. It is custom to smooth the images before applying a gradient based registration scheme. This attenu-

ates the energy of the high frequencies in the image, thus, reducing the Taylor series approximation

error. Note the discussion in Section 6.3. Hence, in practice, the images we register, are quite smooth

and there is no significant difference wether they are interpolated by a bilinear or a higher order

scheme. Namely, a higher order interpolation scheme, provides sharper result images, but if the input

image is smooth to begin with, it makes no difference which interpolation scheme is used.

2. Suppose we aim to register the imagesI1 (x, y) andI2 (x + ∆x, y + ∆y), (∆x and∆y are unknown),
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Figure 9: Estimating affine motion of noisy images. The O3GM and SO3GM allow better registration of

noisy images, compared to the regular GM. The initial estimate is the same as in Fig. 5 andσ is the standard

deviation of the added noise.

and that aftern iterations the current estimate of the motion is
(
∆̃x, ∆̃y

)
. Image interpolation is used

to compute the imagêI2 (x, y) = I2

(
x + ∆̃x, y + ∆̃y

)
before applying the Taylor series approxi-

mation. Hence, using a low-order interpolation introducesthe noise termN
(
x1

i , y
1
i

)
into Î2 (x, y)

and Eq. (2.5) becomes

I1(x
1
i , y

1
i ) = I2(x

1
i , y

1
i )+

NP∑

k=1

∂I2(x
1
i , y

1
i )

∂pk
εk+

1

2

NP∑

k=1,m=1

∂I2(x
1
i , y

1
i )

∂pk∂pm
(ε̃n)k (ε̃n)m+N

(
x1

i ,y
1
i

)
, ε̃ ∈ [0, ε] .

First, the intensity of this noise term is negligible, due tothe smoothness of the registered image.

Second, Eq. (2.5) is minimized as part of a least squares solution, and the noiseN is averaged over

all of the equations. For instance, for the first-order schemes, we formulate a set of linear equations

and the standard deviation of the solution reduces as1
N2

m
, Nm being the number of common pixels.

7 Conclusions and future work

In this work we presented the O3GM and SO3GM image registration algorithms which enhance the perfor-

mance of gradient based registration methods. These algorithms extend the current state-of-the-art schemes
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Figure 10: Image registration using different image interpolation schemes: bilinear, cubic and spline of a

support of 16. All of the simulations were run with the same parameters: initial estimate of the motion,

number of iterations, resolution scales, etc. (a) GM. (b) O3GM. (c) A comparison between the GM and the

O3GM that prevails by converging in fewer iterations.

and were shown to have superior convergence properties. They are especially suitable for the estimation of

large affine and projective motions that can not be bootstrapped by Fourier domain methods. Future work

includes the application of the O3GM and SO3GM to numerically ill-posed computer vision problems that

are based on the gradient methods, such as wide baseline stereo [36] and 3D reconstruction [10].
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8 Appendix A: Third order translation estimation

This section presents a simplified derivation of the O3GM andSO3GM formulations for the 2-D translation

motion model. For this motion modelp = (∆x,∆y) and

x2
i (p)=x1

i + ∆x,

y2
i (p)=y1

i + ∆y.
(8.1)

8.1 Third order translation estimation

We start with the O3GM, where given the input imagesI1 and I2 we approximateI1 by a second order

expansion ofI2

I1

(
x1

i ,y
1
i

)
= I2

(
x1

i ,y
1
i

)
+

∂I2

(
x1

i ,y
1
i

)

∂x
∆x +

∂I2

(
x1

i ,y
1
i

)

∂y
∆y

+
1

2

∂2I2

(
x1

i ,y
1
i

)

∂x2 ∆x2+
1

2

∂2I2

(
x1

i ,y
1
i

)

∂y2 ∆y2 +
∂2I2

(
x1

i ,y
1
i

)

∂y∂x
∆x∆y. (8.2)

Equation (8.2) is formulated for the pixels common toI1 andI2, and

ri =
∂I2

(
x1

i ,y
1
i

)

∂x
∆x +

∂I2

(
x1

i ,y
1
i

)

∂y
∆y+

1

2

∂2I2

(
x1

i ,y
1
i

)

∂x2 ∆x2

+
1

2

∂2I2

(
x1

i ,y
1
i

)

∂y2 ∆y2 +
∂2I2

(
x1

i ,y
1
i

)

∂y∂x
∆x∆y−It(x

1
1, y

1
1) (8.3)

In order to compute the Hessian and Jacobian, we use the chainrule derivatives

∂I2

∂∆y
=

∂I2

∂x

∂∆y

∂x︸ ︷︷ ︸
0

+
∂I2

∂y

∂∆y

∂y︸ ︷︷ ︸
1

=
∂I2

∂y

and

∂I2

∂∆x
=

∂I2

∂x

∂∆x

∂x︸ ︷︷ ︸
1

+
∂I2

∂y

∂∆x

∂y︸ ︷︷ ︸
0

=
∂I2

∂x

Thus, the Jacobian is given by

J =




∂I2(x1
1
,y1

1
)

∂x +
∂2I2(x1

i ,y1
i )

∂x2 ∆x+
∂2I2(x1

i ,y1
i )

∂y∂x ∆y
∂I2(x1

1
,y1

1
)

∂y +
∂2I2(x1

i ,y1
i )

∂y2 ∆y+
∂2I2(x1

i ,y1
i )

∂y∂x ∆x

...
...


 . (8.4)
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It is straight forward to verify that∂
2I2

∂∆y2 = ∂2I2
∂y2 and ∂2I2

∂∆x2 = ∂2I2
∂x2 . Thus, the HessianHi of Eq. (8.2) is

given by

Hi =




∂2I2(x1
1,y1

1)
∂x2

∂2I2(x1
1,y1

1)
∂x∂y

∂2I2(x1
2,y1

2)
∂y∂x

∂2I2(x1
2,y1

2)

∂y2


 . (8.5)

Since it is common to smooth the input images, one can apply Clairaut’s theorem

∂2I2(x
1
1, y

1
1)

∂x∂y
=

∂2I2(x
1
1, y

1
1)

∂y∂x
.

8.2 Symmetric third order translation estimation

In the symmetric formulation (SO3GM) we solve

I1

(
x1

i +
∆x

2
, y1

i +
δy

2

)
= I2

(
x2

i −
∆x

2
, y2

i −
∆y

2

)
. (8.6)

We expand both sides of Eq. (8.6) in a 2nd order Taylor series expansion

I1

(
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2
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2

)
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8
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andri is given by

ri=
∆x
2

(
∂I1(x1
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∂I2(x1

i ,y1
i )

∂x

)
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2

(
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+ 1
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+1
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(8.7)

Comparing Eqs. (8.7) and (8.3), we notice that the coefficients of the powers of∆x or ∆y, in Eq. (8.7),

are the scalings of the sum or difference of the corresponding entries in Eq. (8.3). Thus, in order to compute

Eq. (8.7) it suffices to compute Eq. (8.3) for both input images, store the entries in a matrix, and compute

Eq. (8.7) by adding and subtracting the columns of that matrix. The Jacobian and Hessian can then be

numerically computed the same way as in Section 8.1.
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9 Appendix B: Affine third order formulation

The affine motion model is given in Eq. (2.3) and the derivatives are computed using the derivative chain

rule, where for any of the motion parametersv ∈ {a, b, c, d, e, f} the first order partial derivative is given

by

∂I

∂v
=

∂I

∂x

∂x

∂v

and we get

∂I
∂a = Ixx

1
i

∂I
∂b = Ixy1

i
∂I
∂c = Ix

∂I
∂d = Iyx

1
i

∂I
∂e = Iyy

1
i

∂I
∂f = Iy

(9.8)

The second order derivatives are computed by applying the chain rule to Eq. (9.8) and using Clairaut’s

theorem [37] to compute the mixed partial derivatives
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