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Abstract

The estimation of parametric global motion is one of the eostones of computer vision. Such
schemes are able to estimate various motion models (ttemsleotation, affine, projective) with sub-
pixel accuracy. The parametric motion is computed usingtdider Taylor expansions of the registered
images. But, it is limited to the estimation of small motipaad while large translations and rotations
can be coarsely estimated by Fourier domain algorithmsunb s&chniques exist for affine and projec-
tive motions. This paper offers two contributions: Firsg improve both the convergence range and rate
using a second order Taylor expansion and show first orddradstto be a degenerate case of the pro-
posed scheme. Second, we extend the scheme using a synaifetritulation which further improves

the convergence properties. The results are verified byaigoanalysis and experimental trials.

1 Introduction

Image registration plays a vital role in many image processind computer vision applications such as
optical flow computation [1, 2], tracking [3, 4, 5], video cprassion [6, 7], layered motion estimation
[8] , Nonparametric motion recognition [9] and 3D reconstion [10] to name a few. A comprehensive
comparative survey by Barron et. al. [11] found the familygofidient-based motion estimation methods
(GM), originally proposed by Horn and Schunck [12] and Luaad Kanade [1], to perform especially well.

The aim of the GM scheme is to estimate the parameters vpcamsociated with thparametric image



registration problem: starting from pure global translation, rotatiaffine, and projective motions. These
models have been used extensively and are directly compistagd image spatio-temporal derivatives and
coarse-to-fine estimation. They search for the parametnogtric transform that best minimizes the square
of differences between image intensities over the wholgen&everal formulations of the gradient methods
were suggested. They differ in the way the motion parametersipdated [13]: either by incrementing the
motion parameters [1] or the warp matrix [14]. An updated porhensive description of these methods
was given in [15].

The registration is computed by relating a pair of imagesrngasome overlap using a first order Taylor
series expansion. Each pixel in the common support comdsdba linear constraint, denoted thenstant
brightness constraint Thus, an over-constrained linear system is formulatettlivig a robust estimate.
Gathering and solving all the equations associated witblpix the common support, estimates ¢ihabal
motionbetween the images [14].

Local motions denoted Optical Flow, are estimated by coingut vector field{p; ;} of motion parame-
ters, where each motion vectpy; corresponds to the motion of a small image patch. Such schenierce
a smoothness constraint on the computed motion field, andatfietional framework was shown to be the
state-of-the-art. Variational schemes formulate the @pfiow computation as a variational minimization
problem, which is solved via the solution of partial diffetial equations. Such techniques were applied in
[16] to the computation of piecewise parametric motion, keheach image patch is in the order of 50-100
pixels. Bronx and Weickert [2] applied a second order vemetl approach to improve the accuracy and
robustness.

The smoothness constraint enforced by the variationalnsebéas inappropriate when the estimated
motion field is discontinuous, such as the one resulting fiemotion of multiple objects and their occlu-
sions. A possible solution is to apply robust statisticabmwges. Odobez and Bouthemy [17] implemented
such schemes using M-Estimators for correlation and eiffeal based optic flow computation. Instead of
minimizing the L, norm of the intensity discrepancies between the regisierades, they minimize the M-
Estimator functional applied to the discrepancies. SimRaudk [18] applied both the least median squares

(LMS) the reweighed least squares (RLS) to the discreparane the estimated motion field. Thus, they



were able to analyze noisy image sequences containingaséspatially) discontinuous motions.

The estimation of parametric global motion is the focal paihthis work and has gained significant
attention in the computer vision community. As such scheeséisnate a relatively small number of param-
eters (usually up to 8) based on a least squares formulatitre@ntire images, such schemes are robust
and can be applied to a wide range of applications relateshagé stitching [14] and mosaicing [19]. This
robustness was further used to estimate higher order paiamedels that are able to register quadratic
surfaces [20] (12 parameters), estimate global nonlifkemnination changes [21] and barrel lenses distor-
tions [22]. A limited class of parametric motions was alspligul to video compression within the MPEG4
video compression standard [7, 23]. The focal point in suohke is to derive computationally efficient
schemes, where due to the high frame-rate used (15-25 fraenasgcond) the estimated motion is assumed
to be small.

A critical implementation issue concerning the GM is theineergence when estimating large motions.
As the estimated motion grows, the convergence rate dexyeaml the GM may converge to a local min-
ima. Hence, GM algorithms are unable to estimate large mstmd have to be bootstrapped [24, 25], for
instance, by the coarser and more robust Fourier schemg21R@But, while the estimation of translations
and rotations can be bootstrapped by Fourier based metthaus,are no such reliable solutions for affine
and projective motions. For instance, [28, 29] use affinaniant texture descriptors to bootstrap wide basis
stereo.

We propose to improve the convergence properties of the @uritthm using a second order Taylor
expansion of the registered images. We show that the coeweegproperties of the proposed algorithm are
superior to those of the regular GM for large and small matidbonvergence rates Bfand% are achieved
for small and large motions, respectively, compare2laad1 for the regular GM. The improvement is rigor-
ously proven in two ways, first we analyze the convergencpeait@s of non-linear optimization schemes,
proving that higher order schemes provide better convemygmoperties, and apply the results to image
registration. Second, we show that the GM is a degenerdiegtimal case of the proposed scheme.

Further improvement is achieved by combining the seconéroedpansion with a symmetrical for-

mulation [30]. While no gradient based scheme (includingspgan guarantee global convergence, we



show rigorously and experimentally that the proposed sehachieves better convergence ranges than the
standard GM.

The paper is organized as follows: the optimization baseddpbroach to image registration is pre-
sented in Section 2. We then introduce the third order (O3&hd)symmetric third order (O3GM) schemes
in Section 3. The convergence properties of these scheraggyarously analyzed in Section 5, while ex-
perimental validation is given in Section 6. Concluding atks and future work are discussed in Section

7.

2 Gradient methods based motion estimation

GM methodology [15] estimates the motion paramegelby minimizing the intensity discrepancies between

I, andl,
2
(elyl)es
where
z;=f(x{,y; .p), (2.2)

y2=g(x},yip),

S is the set of coordinates of pixels common/icand; in I;'s coordinatesp is the estimated parameters

vector andf andg represent the motion model. For instance, affine motionvisrgby

xi=pix} + poayi+ps, (2.3)

y2=paz} + psyi+ps

and the projective model is given by

w?:plw% + p2y%+p37

prr; + psy; + 1
42_17496@1 + psyi+ps
Uopral +psyl+ 1

(2.4)




In practice, solving Eq. (2.1) does not result in perfecefigity alignment due to relative intensity
changes, and non-corresponding pixels within the regidténages. Next we follow the formulation of
[14, 31] and solve Eqg. (2.1). The basic GM formulation anditgsative refinement step are described
in Sections 2.1 and 2.2, respectively. These are embeddih@ imulti-resolution, coarse-to-fine scheme,

which improves the convergence properties.

2.1 Basic GM formulation

Equation (2.1) is solved via a linearization scheme, based ixel-wise first order Taylor expansion &f

in terms ofI, as a function of the parameter veciparoundp = 0

Np Np _
OL(xf,yi) 1 0Ly (x},y;.p) -
Ii(x),y}) = Ly(x), y}) + — = pp 4 = L pLPm, P € [0, p]. (2.5)
(wha = Blalal) + 3R ; 3 o 0,p)

I (x},y}) and Ix(x}, y}) are thei'th corresponding pixel i, and Is. %}k’y})

is the partial derivative
with respect to the motion parameters, whose computatiorthi® affine motion model is described in
Appendix B. The second term in the r.h.s of Eq. (2.5) is theraage Remainder [32] of the first-order
Taylor approximation. Ag is an element of a vectorial spade,p] is a segment and not an interval, where
0 is the zero vector.

As p is unknown, Eg. (2.5) can not be solved for Instead, we neglect the Lagrange Remainder term

and solve fovp

Np 1.1
0l (x;,y;
Li(zhyh) = L(x},yh) +§ :72(69;;ky )5pk. (2.6)
k=1

By gathering the pixel-wise equations we get the equation se

Hop =1, (2.7)

whereH; j = —5~
J

andl;; = I (z},y;) — I2(x},y; ). Equation (2.7) is solved using least squares

5p= (HTH) 'H'L,. (2.8)



2.2 lterative solution of gradient methods

In general, due to the omission of the error term in Eq. (2b} p and Eq. (2.1) is solved iteratively. At
each iteration Eq. (2.6) is formulated based on the currgithate of the motion parametgsg .

Denote:
pPo aninitial estimated solution of Eq. (2.1) given as input

pn the estimated solution afteriterations
Then'th iteration of the iterative GM is given in Algorithm 1.

Algorithm 1 Then'th iteration of the iterative gradient methods

1: The input imagd is warped towardg; using the current estimais, » > 0 and it is stored ins. Po
iS a given input.
2: I and ] are used as input images to the procedure described in 8&ctio

3: Jp, the result of step 2 is used to update the solution
Pnt1 = 0P + Pn n > 0. (2.9)

4: The iterations are performed until at mdg},. iterations are completed or the translation parameters

(within ép) are smaller than a predetermined threshold.

In order to improve the convergence properties of the GMitérative process is embedded in a coarse-

to-fine multiscale formulation [8, 15].

3 Third order gradient methods

This section introduces the third order GM formulation (®&Gwvhich is integrated into the regular GM
scheme presented in Section 2. The O3GM replacdg the basic GM step given in Section 2.1. The
iterative refinement (Section 2.2) and multiscale stepdedrintact. We rigorously show in Section 5 that
for nonlinear optimization problems, such as the GM, thénkighe order of approximation, the better the
convergence rate and range. In particular, the registratiimages related by large motions, results in large

parameters deviations. Thus, the approximation error gydowering the convergence rate down to the



point of divergence.

The focal point of the proposed approach is to improve thiemasion of large motions, which might
otherwise be impossible, by lowering the approximatiomernd reduce the number of iterations needed
for convergence.

While one can use a higher order approximation than the seoater one used by our approach, such
schemes will result in an increased computational comyiéiat might prove exhaustive.

The second order approximation results in a set of quadzgtiations solved iteratively, whose solution
yields the refinement terdp. Thus, the proposed algorithm applies two iterative cydles first is identical
to Algorithm 1, while the second solves the quadratic equasiet forép. We show in Section 3.1 that the
GM corresponds to a degenerate and sub-optimal instanbe pfbposed O3GM.

Similar to the basic GM step (Section 2.1), the O3GM acceptmput two images/; and I, that
are aligned as best as possible. It outpigtsthat is an estimate of the motion betweBnand I,. The
accumulation of the iterative refinements is handles byttrative refinement (Section 2.2), the same way
as in the regular GM scheme.

Equation (2.1) is solved by expanding it in a second ordetofaeries expansion
NP

N,
OL(x},y}) 1 0*I(z},y;)
L(xj,y;) = Ta(ag,y7) + ) 0pj— S 550 4 5 ) 0pjdpe—p 25 (3.1)

= Ip; Py Ip;jOps

and solving forép. dp is a refinement of the current estimate of the motion. Thpdgs substituted into

Eqg. (2.9). IV, is the number of motion parameters. For instance, for theskasion motion modedp =

(6z,6y)", N, = 2, and we get
2

*L(z,y;) _ 0Dz}, y;) 32[( ) L(z,91) o
s i19d LirYi 9 TirYi Lo Y . 3.2
E op;jop 0D, = = oz’ + oydx —|— 2 oy (3.2)

js=1
The first and second partial derivatives with respect to tkian parameters are computed using the
chain rule and their computation for the affine motion modealéscribed in Appendix B. Equation (3.1) is
evaluated at each pixel common to the imagesnd I>, forming the quadratic equation set;},_;
whereN is the size of the common area. Thusjs theith equation computed by substitutidg(z}, v})

andl(x},y}) into Eq. (3.1).



Np

(9] ZL' 5 8 I :L' )
i op) = 3 opy i) 3 LS bt PRI 1 ad 33)
J=1 J s=1
Np 1 1 Np 2 1 1
0l (xyy, 1 0“5 (xyy,
ry (6p) = Zm% +5 0. 5pj5psw — Ii(zy.yN)
j=1 J js=1 I

where
It(le>y21) = Il(le>y21) - 12($zl>yzl)

Section 8 details the derivation of the equation set fordiegiion estimation.

In first order GM schemes (Section 2.1), the imdgés approximated by a linear model, and the set
{ri};=1 .~ isasetoflinear equations. Thus, the refinement term of titeomparametersip, is computed
by linear least square$Eq. (2.8)). In contrast, the O3GM derives a quadratic setgpfations (Eq. (3.3))

and the refinement of the motion parametégsis computed byon-linear least-squares
— . 2
op = arg n}sz;xzi:r, (6p)~. (3.4)

Equation (3.4) is solved by iterative Newtonian methods B3. We applied the Gauss-Newton and New-
ton’s schemes that differ on the formulation of the Newtaritarations. A single iteration of the Gauss-

Newton algorithm is given by
sp*tD) = p®) — (3T3) 7 3T, k=0, (3.5)

while the Newton’s scheme’s iteration is given by
N -1
spt+D) = gpk) _ (JTJ +> Hiry <5p(k))> ITr k=0,. (3.6)
r=(ry,... ,rN)T, J is the JacobianH; is the Hessian of an equation anddp® is the solution at the

Newtonian iteratiork, wheresp(®) = 0.



The Jacobiawy of {r;},_,  is given by
r N,
812($ 7y a 12($ Y ) 812($17y1) 8 8212(221,’5/1)
apll . + z 5 aplalps . ap;fp ' * 2_: 5]93 aprlapsl
J = (3.7)
BIQ(xN,yN 82 Ig(:p}\,,y}\,) Blg(xN,yN 82 Ig(:pN,yN)
T Op1 + 25 Op;Ops " 9pN, + 25 Bps

The first and second order partial derivativesfvith respect to the motion parametgssare computed

using the chain rule. Appendix B details their computationthe affine motion model. The Hessikf is

the Hessian matrix of the single equatigr(see Eg. (3.3))

I 8212($%7y%)

8212($%7y%)

8212($}\77y}\7)

8212(:2}\]73/}\7)

OpnN,Op1

OpnN,Op2

8212(m%7y%) ]

op3 Op10p2 Op19pN,
8212(1’%4/%) 8212(1’%4/%) 8212(:(:%,1/%)
_ Op20p1 op3 Op20pn,,

8212($}\77y}\7)

2
Op Np

(3.8)

Since the quadratic equations set is given explicitly, th@pgutation ofJ andH; is fast and accurate up to

machine precision. The scheme is summarized in Algorithm 2.

Algorithm 2 Third order gradient methods
1. Compute the first and second partial derivativeg,ofvith respect to the motion parameters.

2: Form the second order polynomial equation{se},_; .

3: Compute the Hessiaf#; },_, ~ if Newton's algorithm is to be used.

. of {Tz‘}i:L...,
4: Setdpg = 0.

5. for n = 010 N4, dO

6: Compute the Jacobiahand evaluate; (6p,,).

7. Either Eq. (3.5) or Eq. (3.6) are applied according to thénoigation scheme used.
8:  Stop the iterations if the translation parameters reactedgbermined threshold.

9: end for

10: Returnép,,.




3.1 GM as a degenerate case of the O3GM

In this section we prove that the GM is a degenerate and stilmalgnstance of the O3GM. It is equivalent
to applying the O3GM using a single Gauss-Newton iterati¥p.{ = 1 in Algorithm 2) with a zero initial
motion estimate.

We start by considering the GM formulation in Eq. (2.6), wddacobian is given by

olz(xi,y1) . 8I2(xl,yl)
Op1 Opn,,
Jom = : : (3.9)
Oh(zyyy) . Ol(zhyy)
Op1 Opn,

Comparing Eg. (3.9) tdosgas, the Jacobian of the O3GM (Eg. (3.7)), we note that by setting: 0

we get

Jam = Josam

Thus, applying Eg. (3.5) once to solve the quadratic set aitinitial estimatelp = 0, yields the same
result as solving Eq. (2.8) within the GM scheme. As one cagryamore iterations and use Newton’'s
scheme (Eg. (3.6)) to solve the quadratic equation, the GMdggenerate and sub-optimal case of the

O3GM scheme.

4 Symmetric third order GM formulations

The symmetric GM (SGM) formulation was introduced in [30irtgorove the convergence properties of GM
schemes. It utilizes the symmetry of the image registrgti@mblem with respect to the motion parameters
p, to reduce the approximation error. The error reductiorsezed by the O3GM and SGM are comple-
mentary, thus, we integrate both in a unified framework wethal Symmetric third order GM (SO3GM).

The image registration problem is symmetrically formuliatising a parametric motion model definedpby

I (x%y% g) =1 (w}7y3, —g) : (4.1)

10



Both sides of Eq. (4.1) are expanded using a second ordeorTeypansion and neglecting tB& order

error term
N, N,
v = 2 Opj 2jS:12 2 Op;Ops
R +§p:28[2(x},y}) L1 i fe Phahy) o,
2\ ~2 oy 24422 Opiops '

whereNN, is the number of motion parameters anid the vector of motion parameters to be estimated.
The focal point of this formulation is that given the imadesand I, related by an unknown motiom,

both sides of Eqg. (4.2) approximate an image correspondiriiget middle point (in the parameters space),

whichisé; = % apart from both images. In contrast, the O3GM scheme usedjsipproximation over

the intervald, = p. Recalling that the approximation error is relateqyﬁqy?’, we get that both sides of Eq.

3
(4.2) are associated with an error@f‘é’—”) = ”%”3 and the overall error is bounded ﬂ;ﬁ'ﬁ’ compared to
|p||® for the O3GM. Similar results were derived for the GM schemfsD].

By reformulating Eqg. (4.2) we get

N
1 — oLy (x},y})  OhL(xl,y))
et ) = o (ko) + 5 3oy (2r) o 2]
N
1 PLy(xl,yl) 021 (xly))
+—§5-5s< T — > 4.3
5 22 00 "o ap  apone ) Y

By constructing the above equation for all of the pixels i ¢ommon support betwedpnand/,, we derive
a quadratic equation set that is solved by Algorithm 2jfer

5 Third-Order Convergence analysis

In this section we analyze the convergence properties ohdimelinear least squares scheme used in GM
based image registration. We formulate the optimizatioa zsro crossing problem solved by Taylor series

based approximations, and derive the corresponding ogernee rate and range.

11



Definition 5.1 (Least squares minimization) A vector functionf (p) : R — R™ is minimized in the
least squares sense with respect to the veEtdr

m

p’ = arg mPinf (p) = arg Hi)in; (14 (p))2 . (5.1)

If r; (p) is nonlinear with respect tp, Eq. (5.1) is denoted the nonlinear minimizationfofvith respect to

p.
Definition 5.2 (Iterative solution) An iterative solution of an optimization problem is given by

Pnt1 = Pn — 0P, (5.2)

wherep,, and ép,, are the vector of parameters and the update term, respégtivemputed at iteratiom

while
En=P —Pn (5.3)

is the parameters’ error at iteration.

Definition 5.3 (Range of convergence)or an iterative optimization scheme, the range of convergeis
given by a scalar,,x > 0, such that for any vectot such thate,,x > |||/, applying the iterative
optimization scheme decreases the value of the cost fangti@n in Eq. (5.1)]e,|| > |lens1]| and the

scheme converges to its global minimum.

Definition 5.4 (Small and Larger deviation) For an iterative minimization problem, a large deviatipris

characterized byl f (p)|| > ||f (p*)|- A small deviatiorp is in the vicinity of the solutiop*, and we have

LF )l =Odf @I

Equation (5.1) is solved iteratively by approximatifigp) at the zero crossing poipt using a second-

order Taylor series expansion aroumgl

. £ Of (pn) 1 & 2f(pn) _
f(p)—f(pn)+l§::1 o (en>k+5k1:§2ﬂm<sn>kl<en>k2+R2<pn,p,en>. (5.4)

12



wheree,, is the estimation error in iteration, Np is the dimension op and R, (px, p) is theLagrange

Remaindef32] of the Taylor series approximation given by

Np

~ 1
R2 (pn7p>€n) = 6 Z

ki=1,ko=1,ks=1

0°f(P)

—— (en €n €n)r. P € [0,en]. 55
0pk13pk23pk3( )kl( )k2( )k3 p €| ] (5.5)

As both f (p*) and R, are unknown §* is a minimum point, but one can not assume thgp*) = 0),

Eqg. (5.4) can not be solved directly. Hence we neglecand f (p*) and solve

Np

0% f(pn)
klzl%zl OPk, OPky (0P, (0P)k,

of (pPn)
Opy,

1

Np
0=H(dp,) £ [ (Pn) + 5
k=1

in the least squares sensg,, is the refinement term computed by the O3GM.
Recalling thatp,,+1= p,,—dp,,, the right-hand-side of Eg. (5.6) is a truncated seconeyofichylor

approximation off (p,1) over the intervalp,,, p,+1]. Thus,

f (pn—l-l) =H (6pn) + R2 (pn> 57 5pn) 75 € [07 5pn] (57)

and asH (dp,,) = 0 (Eq. (5.6)), we get

If (Pas1)]| = Cs ||6p, | 5.8)
where
Np 3 g \
1 2°f(p) (‘ O3 > _
C 6 Oor. Onr. Opr. = O a3 ? E mny n .
’ 6 ki1=1 ZI; =1 apklapkzapkg 8p3 p [p p +1]
1=1,....,k41=

We continue to study the convergence properties for lardesarall deviations.

Lemma 5.1 The convergence rate of the second-order approximatioarsetfor large deviations is given

3/2

by |lent1] = g—; llen||” <, whereCy and C5 are constants and large deviations are characterized by

1F ()] > [If (p*)Il and|len| > 0

PROOF. For large deviationg f (p)|| > | f (p*)

, hence we can neglect the tetifi (p*)|| in Eq. (5.4).
Moreover, sincé|e,|| > 0

%’5 02 f(p)

>
aplﬂ apkz

(En)kl (en)p, (5.9

ki=1ko=1

13



and thus, Eq. (5.4) is reduced to

Np

_ |3 92/ (p) ) o
F®0l=l5 2 5 B, 0k Cnlia| = Colleall®, B € [020) (5.10)
k1:17k‘2:1
where
. *1(B) (\ o f )
L amons |~ \la]) (5.11)
2 2k1=lz,k:2:1 apkl apkg apZ

Substituting Egs. (5.8) and (5.10)

: n : C €n 2 ./ C 2
”5an _ 3 ’f(l()ji:‘l)‘ — 3/ “2 ”C;-IH _ 3 Fi HEn—i-IHS ) (512)

By EQ. (5.3)ent1 = €n — dpn, and as we are away from the solutipsy, 1 || > 0, thus

0/ lenalf = 3p] < leal
and
femall < /2 el (5.19
The ratio&! is given by
3 2
-o|241/1%)

The smaller the rati(%, the faster the convergencé’s = Hgip{ is related to the approximation error of

the second-order Taylor expansion. Thus, the more acctmatapproximation the faster the convergence.

QED

Lemma 5.2 The convergence rate of the second-order approximatioedasheme for small deviation is

given by|lens1]| < &8 |len)®, whereC; and C; are constants.
PROOF. For small deviationg f (p)|| — ||f (p*)|| and||en| — 0, thus

2
lenll > [lenll”,

14



Np Np ~
9f(pn) &*f(p)
> (€n)p, Yo s (en)i, (en)s (5.15)
= Ok fe et Opi, Opk, ! 2
and Eq. (5.4) is reduced to
Np
of (pn ~
(o) = || S 2LLP) ‘uenn = Oy Jenll B € (0.20) (5.16)
1 Pk
where
of (p
=325 | = l]): 617
Pt 32%
Substituting Egs. (5.8) and (5.16), we have that
n C1 |len 1” 5/ C1
<3|f(P+1)|:3 1 + ‘ _
||6pn||\\/ c c & lensal? (5.18)
By Eq. (5.3),cnt1 = €n + dpn, hence
e
0 < llentall = lleall = 1P, = llenll — 01 lensal? (5.19)
e 1
lenll = f/g; lenall®
and
C.
C3 HenH > ||5n+1H (520)
The ratlo |s given by
Cs
— 5.21
Cr <‘ H) -21)

Recalling that the error of the second order Taylor appraxiom is bounded b)Hgip{

(5.5)), Eq. (5.21) takes an intuitive form - in the minimipat of functions that are well approximated by a

QED

Lemma 5.3 The convergence range of the second-order approximatisedacheme is related to the en-
ergy of the high-order derivatives of the objective funttfoand therefore to the decay of its spectra in the
Fourier domain. This provides a measure of the performarficteeosecond-order scheme given an objective

function f.

15



PROOF. The convergence rangg... is given by computing the errar,, such that for anyle, || > ||lemax||
applying the iterative step given, using Eq. (5.13), wilukt in an increase of the parameters error, instead

of its decrease

Cg 3
€max < [lent1] = 52 l|emax|| 2
and we get
C
?2 < ||5max|| . (522)

Equation (5.22) implies that,,,, is maximized ag’s — 0. This corresponds to using an approximation
whose order is higher than the order of the functforiFor instance, the solution of a quadratic equation set
using the second order approximation, will converge in glsiiteration, usin@nyinitial estimate.

Further insight can be derived by applying Parseval’s TémaioCy; andCs. Thus,

0% f
and
O3f

s

and the ratioCS

measures to the decay of the magnitude of Fourier transfdrtheoimage. Hence, a
smoother images will tend to have a smalley coefficient, and a larger convergence range. In particular,
this ratio can be efficiently computed for a given image arsgsghe convergence rangg... This analysis
also provides a justification to the common practice of simogtthe input images before applying the GM

registration. QED

For the sake of completeness, we summarize the convergengeries of the first-order GM scheme.
Such schemes apply a first order Taylor expansiofi(@f), and are commonly known as the Gauss-Newton
optimization algorithm [33, 34]. Its convergence progEstare given in the following Lemma, while details

and rigorous analysis can be found in [30].

Lemma 5.4 The convergence process of the GM and SGM schemes can beddivitivo distinct phases,

characterized by the deviation of the parametprisom their optimal valugp* and the convergence rate of

16



the optimization scheme. Near the minimpm- p*, [|e,|| — 0, a quadratic convergence rate is achieved.

Away from the minimum, a slow linear convergence rate iseae.

L s 2
lentall < Canr - llenll + Canr - llenll
whereC?,, andC},, are constants.

PrRoOOF. The proof of the above Lemma was given in [30]. Similar resswlere derived in [34] for uncon-
strained Newton’s methods, where small and large deviatioe referred to as tlgpiadratically convergent

anddampedconvergence phases, respectively. QED

5.1 Symmetric third order GM convergence

The convergence properties of the SO3GM can be derived bsideming Eq. (4.3), which defines the

derivatives off, the objective function minimized by the SO3GM. Since the36&®™ uses the same order

of approximation as the O3GM, we get the same orders of cgamee for both small and large deviations.
The difference lies in the ratio &f5 andC», the overall energy of the derivatives. Denote(y C» and

C; the corresponding derivatives norms for the SO3GM. We coentheeir values ta’'s, Cy andC, related

by the O3GM, and show that the convergence rate is improved.

Using Eq. (4.3) we get that the norm 6% is bounded by

6 _1 82[2((%1,%1) _ 82[1(3521,34}) l 82[2 1 82[1
27 Op;0ps Ip;0ps ~ 4 || Op? 4 || Op?

_ 1L _ G

20 op?|| 27

ForCs andC; we have

~ 1 031, (x},y})+8311 (2}, y}) 1 PL|  1]0°L
57 8| Op;OpsOpe | Op;dpsOpe ||~ 8| AP | 8| apt

_1en|_ o

S 4|lop3| 4

and
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1|0 5P p) | On( y)

Oy =
1= Opj Opj

H Iy

H@Iz

<
H%

Hence, we compute the convergence rates and ranges for 8@MJd-or large deviations we get

03 3 03/4 3 103 3
< = = = .
lensall < Zlenll® = G275 leall? = 55 el (5.25)
and for small deviations
C’3 03/4 103
lentall < g\lsn\l enll® = H enll’ (5.26)
1

Comparing these results to Egs. (5.13) and (5.20) we se¢nha&@O3GM allows better convergence
rates, especially for low deviations.
Next we show that the convergence rang€3¢* is also improved and by substitutir@, andC in

Eq. (5.22) we have

SO3GM 2 2 2 O3GM
= = = =2—=2¢ . 5.27
max Cs CS/ 1 Cs €max ( )

€

6 Experimental Results

This section describes the performance of the proposedithligis and verifies the convergence analysis
given in Section 5. The same implementations ofitemtive refinemenandmultiscale embeddingere
used for the O3GM, SO3GM, SGM and GM algorithms. Thus, thg difference between the schemes
is thesingle iterationmodule. The translation and rotation simulations were ootetl using thé.enaand
Airfield images transformed by bilinear interpolation, while thfnaf and projective motion were tested
using real images. The images in Fig. 5 were taken by a phertogetric aerial camera, while the images
in Fig. 7 were taken by a hand held 35mm camera. The GM algoritas implemented according to

[15, 35] that are considered state-of-the-art. The firstsmmbnd order derivatives were computed using the
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following central difference approximations

OULd) — 11 (i,5+1) — I (i,j — 1)) ULD = L(I(i+1,5) — 1 (i —1,5))
T = 2 (1(i,j+2) - 20 (i) + (1,5 —2) D582 =L (I (i+2,5) =21 (i,5) + 1 (i — 2,5))

OL0A) = OTCD — L ([ (i~ 1, ~ 1)~ I(i— 1,5+ 1)+ 1+ 1,5 1) +1(i+1,j+1)).
In order to avoid spatiotemporal aliasing and allow ace&u@mputation of the spatial derivatives, the
images were initially smoothed by a Gaussian filter with advadth of o = 11. The same filter was used
to construct the multiscale pyramid whose scales were gi(@ii scale) and 1/3. The support of the filters
is larger than the one used in prior works [15, 35]. This aims to better estimate the second order image
derivatives and also improves the convergence range oéthdar GM scheme such as in [15, 35].

We used the upper-left image corner as the origin of axis. ddmmon support of; and I, was
computed in each iteration by applying the motion estimatthé bounding rectangular @§. Next, we
identify the intersection points between the boundingamgles ofl; and (the transformed), and compute
the convex hull of their mutual support.

The focal point of the experiments in this section is to iilate the improved convergence properties of
the proposed schemes. In order to asses the convergenartim®frate and range), the figures show the
alignment error (Eg. (6.1)) Vs. the number of iterations.wéis shown in [30] that the convergence rate of
the alignment error and the motion parameters are the same.

The alignment error is given in terms of the mean squared erro

. 1 2
Alignment Error = N Z ([1 (w},y}) — Iy(z}, yll)) (6.1)
(:v},yil)es

whereN,,, = ||S]| is the number of common pixels.

The dimensions of the images used in the simulations is irotder of 512 pixels. In least squares
based optimization schemes, the larger the equation sdigtier the robustness to noise and computational
accuracy. Thus, the larger the registered images, the mbusst their registration by the GM and O3GM
schemes.

We empirically study the convergence properties in Sedi@nand compare the results to the rigorous

analysis presented in Section 5. Finals higher order derivatives are known to be sensitive toenois
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@ (b)

Figure 1: The test images used for evaluating the propodeztse by recovering rotations and translations.

(a) Airfield. (b) Lena.

we asses the convergence of the proposed approaches irettenge of noise, and different interpolation

schemes in Section 6.4.

6.1 Rotation and translation estimation

We start by applying the proposed scheme to the estimatitraindlations and rotations. For that we used
the Lena and Airfield images shown in Fig. 1. These images me¢aged around their center and translated.
Different registration schemes were applied to align thadformed replicas to the original images, using a
zero initial estimate of the motion.

First, we recovered small motions for which all of the aligmmhschemes converged. This allows us to
compare the convergence rates over the different schemgseafy the analysis given in Lemmas 5.1 and
5.2. All of the schemes were applied using a single resoludale. These results are presented in Figs. 2a
and 3a. For both images, the third order schemes (O3GM an&SMdutperformed the corresponding
standard schemes, GM and SGM, respectively.

We then studied the estimation larger motions in Figs. 2b3md here, we applied a resolution pyramid
to all schemes, as such pyramids are the common approaclptovimg the registration range of gradient
methods. In all of these instances, the O3GM convergedfigntly faster than the first order formulations
(GM, SGM), and was outperformed by the SO3GM, while being tiivees faster than the regular GM.

The convergence of larger motions is presented in Fig. 4revive significantly enlarged the motion
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Figure 2: Rotation and translation estimation results ferAirfield image. The image was rotated and

translated by(a) (0 = 5°, dz = 20, dy = 20). (b) (6 = 10°, ox = 35, dy = 35). A zero initial estimate

of the motion was used. The second order formulations cgedesignificantly faster than the first order

formulations. The SO3GM algorithm converged twice as fatha O3GM algorithm.

70

Alignment error

Figure 3: Registration results for thieena image.
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The image was rotated and translated (&y

(0 =5°, ox =20, oy = 20). (b) (0 = 10°, dz = 20, dy = 20). A zero initial estimate of the motion was

used. The SO3GM converged significantly faster than the SG3d.other algorithms diverged.
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Figure 4: Registration results for large motions.(a) Airfield image rotated and translated by

(0 = 15°, 6x =0, oy = 0). (b) Lenaimage rotated and translated f= 20°, =z = 0, dy = 0). A zero

initial estimate of the motion was used. In both cases the@®8onverged significantly faster than the

O3GM, while the first-order schemes diverged.

magnitudes compared to Figs. 2 and 3. The O3GM and SO3GM ssheomverged, while the first-order
GM and SGM diverged. This exemplifies the superiority of theamd-order approach when dealing with
large motions. The registration accuracy of the O3GM and@®@3hat was ofO(10~1%), for all motion

parameters.

6.2 Affine and projective motion estimation

The registration results of real images using the affine anpkgtive motion models are given in Figs. 5

and 7, respectively. The initial estimate of the motion wizemyas a translation, computed by aligning the
X marks in both images. We intentionally chose an inaccuratial estimate, making the residual motion

(estimated by the various GM schemes) large. The samd miéiaon was used by all the different schemes.
For these real images, the final alignment error results ftmrack of perfect matching, and the existence
of non corresponding (outlier) objects in both images.

In the affine case (Fig. 5), the O3GM outperformed the GM byeaying twice as fast. Better con-

22



vergence was achieved by the symmetric motion models (SGM@BGM) and the best convergence was
achieved by the SO3GM. The initial estimate (based on theskation between the X signs in Fig. 5) was

(6x,dy) = (231, —17) and the computed motion was

9 = 1.0516x1 + 0.0708y; + 217.5

y2 = 0.005871 + 0.9387y1 — 9.23.

—o—Symmetric & order GM|
——3" order GM
—6—Symmetric GM

GM

13f

2 e
® © & =B
T T T T

~
T

Alignment error

N oo —a

Iterations

@) (b) (c)
Figure 5: Registration results for affine motion. The inidatimate of the motion was given by marked by

the red X. The SO3GM converged 4 times faster than the GM aiwe &5 fast as the O3GM and SGM.

In order to statistically asses the improvement achievedhbyO3GM, we computed a set of 1000
random affine motions and applied them to the Lena and Airfieltjes. The images were then registered
using the GM and O3GM schemes. As different affine motionaltrés different alignment errors and
convergence curves, we normalized these curves by congptitthnumber of iterations needed to reach
certain error alignment ratios. These are the number dftiters needed to reduce the alignment error to a
particular percentage of the initial error. The error ragialepicted by the x-axis of Fig. 6. Then, in order
to compare the GM and O3GM, we present in the average ratidvbfd3O3GM iterations (y-axis) needed
to reach corresponding relative alignment errors. Sinddfig. 5, the O3GM required less iterations than
the GM and the standard deviation Waﬂ)(lo—Q), proving that the improvement achieved by the O3GM

is statistically stable.
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Figure 6: Registration statistics for 1000 randomly geteetaffine motions. Random affine motions were
applied to the Lena (a) and Airfield (b) images. We comparatimeber of GM and O3GM iterations needed
to decrease the alignment error to a particular ratio, aacctiresponding standard deviation. The x-axis
shows the alignment error ratio, while the y-axis depicts fthtio of GM iterations to O3GM iterations

needed to achieve a particular error ratio.

The results of registering the panoramic images using &@iige motion model are presented in Fig. 7.
These images have a significantly different brightness dube auto-exposure of the camera. We left the
brightness as is, to make the registration more difficulie ifitial estimate wasdz, dy) = (583, —43) and

the computed motion was

~0.62952; + 0.0021y; + 596.6587
T T 0y £ 11100y, 1 1
—0.1038z7 + 0.9324y; — 25.3759

41042, + 1.1- 105y, + 1.

Yo =

The timing results for the affine case are given in Table 1,revltbe measurement were taken on a
2.8 GHz PC computer and the algorithms were implemented mroptimized C++. For these high-order
models, the complexity of the proposed algorithms is highan the computational complexity of the GM

and SGM. Yet, it is useful for estimating large motions whitiee GM and SGM might diverge.
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Figure 7: Registration results for projective motion. Thigial estimate of the motion was given by the red

X. The SGM converged better than the O3GM while the SO3GM sllatlve best convergence properties.

Iteration# | Total timing [s] | Average iteration timing [s]
GM 22 0.8 0.036
SGM 17 11 0.064
O3GM 17 1.2 0.070
SO3GM 12 14 0.117

Table 1: Timing results for the affine registration given ig./s

6.3 Convergence analysis verification

The convergence analysis given in Lemmas 5.1 and 5.2, sisghasthe convergence raticg;—, andg—?, for
the large and small motions, respectively, are relateddaetiergy of the image derivatives. Equivalently,
& and & are related to the spectral content of the input images (Le5u3).

In this section, we study this relationship empirically,\&rying the derivatives/spectral content of the
images in Fig. 1, by smoothing them with Gaussian low-patsrgil For each image, several smoothed
replicas, corresponding to standard deviations 6f 7,11, 15, were computed. These images were then
aligned using the O3GM and GM schemes. Figures 8a and 8b slemwhvergence curves over the different

image smoothing factors, usingagarithmicy-axis. Thus, Egs. (5.13) and (5.20) become
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C 3
log [lent1]| = log \/é’ + 5 log|lenl (6.2)

and

C
log llens 1l = 1og5j + 3log ||en]|, (6.3)

respectively. Thus, we are able to study the different cagamce phases, and the dependence if the coeffi-
cients&2 and &2 on the smoothness of the input images.

A few conclusions can be drawn from Fig. 8: first, the conveogeis indeed made of two phases,
starting with a low slopeg and1 for the O3GM and GM, respectively) and then turning into a&ge
slope @ and2 for the O3GM and GM, respectively). Second, by comparingcthrevergence curves for a
given image and scheme (say the O3GM), over the differenonrg factors, we notice that the curves
only differ by a vertical shift, while having the same slop&sis corroborates Lemma 5.3, that related the
spectral content of the input images to the coeﬁici%tsandg—f, and not to the convergence ratésa(nd
1). Last, we note that the O3GM and SGM exhibit similar slopkesleed, it was shown in [30], that the

SGM can achieve O3GM-like convergence for small motions.

6.4 Sensitivity to noise and interpolation errors

As higher order schemes are known to be sensitive to noisissked the robustness of the proposed scheme
to two typical noise sources in image registration. First, a@nsidered the influence of White Gaussian
noise (WGN). WGN was added to both images in Fig. 5 with= 0,30,60. The GM and SGM schemes
were applied and the results are depicted in Fig. 9. The saiti@ imotion was assumes as in the prior
section. Figures. 9a and 9b show Fig. 5a after adding WGN avith 30 ando = 60, respectively. The
initial estimate of the motion, was chosen such that theluasimotion was large. The convergence results
depicted in Fig. 9c, shows that the second-order approagbesmore stable than the GM in the presence
of noise for all noise levels. As before the SO3GM outperfedrthe other schemes.

Next we considered the errors induced by using differengeriaterpolation schemes. Interpolation is

used in Step #1 of Algorithm 1, where at each iteration theeruirestimate of the motion is used to align
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Figure 8: The convergence of the O3GM and GM schemes withecédp the smoothness of the in-

put images. The images were smoothed with a Gaussian losvipees with a varying widtho. (a)

Registration of the Airfield imagéd = 5°, 6z = 20, oy = 20). (b) Registration of the Lena image

(0 = 5°, dx = 20, dy = 20). These images are shown in Fig. 1.

the images. Figure 10 depicts the results of applying the G@3GM to the same registration problem as
in Fig. 5, using bilinear, cubic and spline interpolatiornelsame registration parameters such as the initial
estimate, iterations number and multiscale pyramid weee usall of the simulations.

The results for the GM and O3GM are shown in Figs. 10a and Hiperctively. For both schemes the
convergence properties are unchanged by the use of diff@terpolation schemes. We attribute that to the

following issues:

1. Itis custom to smooth the images before applying a gradi@sed registration scheme. This attenu-
ates the energy of the high frequencies in the image, thdscheg the Taylor series approximation
error. Note the discussion in Section 6.3. Hence, in practie images we register, are quite smooth
and there is no significant difference wether they are iolatpd by a bilinear or a higher order
scheme. Namely, a higher order interpolation scheme, gesvsharper result images, but if the input

image is smooth to begin with, it makes no difference whidhrjpolation scheme is used.

2. Suppose we aim to register the imadgegr, y) andl; (x + Az, y + Ay), (Az andAy are unknown),
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Figure 9: Estimating affine motion of noisy images. The O3QGM 803GM allow better registration of
noisy images, compared to the regular GM. The initial edénsthe same as in Fig. 5 ands the standard

deviation of the added noise.

and that after, iterations the current estimate of the motior(fSVx, &/) Image interpolation is used
to compute the imag@z (x,y) = I <a: + Avx,y + &;) before applying the Taylor series approxi-
mation. Hence, using a low-order interpolation introduttes noise termV (z},y;) into I (z,y)

and Eq. (2.5) becomes

N N,
Ii(zly}) = [2($1,y1)+i M l i z’yz (Bn)g (Bn),, +N (gjl,y.l) ,Ee0,e].
e ST Ok 3 Tt 3pk3pm " o

First, the intensity of this noise term is negligible, duetlte smoothness of the registered image.
Second, Eq. (2.5) is minimized as part of a least squaretiaoliand the noiseV is averaged over
all of the equations. For instance, for the first-order sab&mnwe formulate a set of linear equations

and the standard deviation of the solution reduceﬁaast being the number of common pixels.

7 Conclusions and future work

In this work we presented the O3GM and SO3GM image registratigorithms which enhance the perfor-

mance of gradient based registration methods. These thigsriextend the current state-of-the-art schemes
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Figure 10: Image registration using different image intdmpion schemes: bilinear, cubic and spline of a
support of 16. All of the simulations were run with the sameapzeters: initial estimate of the motion,
number of iterations, resolution scales, etc. (a) GM. (bi®13 (c) A comparison between the GM and the

O3GM that prevails by converging in fewer iterations.

and were shown to have superior convergence propertiey. arkeespecially suitable for the estimation of
large affine and projective motions that can not be bootggdpy Fourier domain methods. Future work
includes the application of the O3GM and SO3GM to numenddtposed computer vision problems that

are based on the gradient methods, such as wide baseliae 26 and 3D reconstruction [10].
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8 Appendix A: Third order translation estimation

This section presents a simplified derivation of the O3GMa@BGM formulations for the 2-D translation

motion model. For this motion model = (Az, Ay) and

2?2 (p) =z} + Az,
KA ( ) 3 (8_1)
y? (p)=y; + Ay.

8.1 Third order translation estimation

We start with the O3GM, where given the input imadesand 1> we approximatel/; by a second order
expansion ofl,

0l (zi y; Ol (x}y}
B (elal) = 1 (el ) + 228000 Ol

1L (ohy)) o 10D (sld) | o . O (shy)

Ay

Equation (8.2) is formulated for the pixels common/icand s, and

_ oI (z}.y}) A+ oI (z}.y}) 18212 (z}y))

. 2

i Ox oy Ay+2 Ox? Ar
191 (leu%l) 2 01 (35117%1) 1.1
578312 Ay“ + 7834895 AxAy—TIi(z1,y7) (8.3)

In order to compute the Hessian and Jacobian, we use the haiderivatives

0L, _ 0105y | 01,05y _ 0L
0Ay Oz 8O:E Oy Oy oy

1
and

0, 0L, 0Ax 0L, 0Ax 0l
0Nz Ox _Ox dy Oy  Ox
1

0

Thus, the Jacobian is given by

0Ly (z!yh) + aQIz(xé,y})

5212(1’}71/})

Az+ Oyox

Oa(atyl) | O(zbyl) A, OL(zyl)

(8.4)
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It is straight forward to verify thalf’% 6 12 and 5’&% = %. Thus, the HessiaH; of Eq. (8.2) is

given by

8212(55173/1) 8212(-'5%731%)
Oz2 0zxdy
H, = o1 DR I (8.5)
0% Ia(z3,y5)  0°12(%3,y3)
dyox Ay

Since it is common to smooth the input images, one can applyatit's theorem

P Ix(x1,y1) _ OPho(ai, i)
oxzdy  Oydxr

8.2 Symmetric third order translation estimation

In the symmetric formulation (SO3GM) we solve

Az 0y _ s Az 5 Ay

We expand both sides of Eq. (8.6) in&drder Taylor series expansion

1 % 1 % _ 1,1 8[1(35},%1)% all(“%ﬂ%)%
2P0 (h) 1, 20N (wiy)) 1 0% (i, y1)
AT 2 8A A T v e

andr; is given by

Az [ 0h(zly)) 812( 27y D onh(azlyl) | ol(xlyl)
Ti= 2$ ox + + 2y oy + oy
1 2 8211(:v},y 8212 27y 1 2 8211( ) 8212(m21,yi1)
+lAg 2 LAy ) 2 8.7)

+3AzAy (82%5,55“) 8212@5;% > — I (z},9})

Comparing Egs. (8.7) and (8.3), we notice that the coeffisiehthe powers oAAx or Ay, in EqQ. (8.7),
are the scalings of the sum or difference of the correspgneliiries in Eqg. (8.3). Thus, in order to compute
Eq. (8.7) it suffices to compute Eq. (8.3) for both input immgetore the entries in a matrix, and compute
Eqg. (8.7) by adding and subtracting the columns of that maffihe Jacobian and Hessian can then be

numerically computed the same way as in Section 8.1.
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9 Appendix B: Affine third order formulation

The affine motion model is given in Eq. (2.3) and the derivetiare computed using the derivative chain

rule, where for any of the motion parameters {a,b,c,d, e, f} the first order partial derivative is given

by
oI 0l 0x
ov Oz Ov
and we get
ol _ 1 9l _ 1,1 oI _
da — Iml'i o — 12Y 5 — I, 9.8)
) ) )
a_ézlyl"zl a_iz yY; a_JIf:Iy

The second order derivatives are computed by applying theahle to Eq. (9.8) and using Clairaut’s

theorem [37] to compute the mixed partial derivatives

03 =5 (5) = & (Loa}) = Luea} das = o5 (32) = & (Ioa}) = Le]
duaa = o (5) = g (Low}) = Luaa) duaa = o (G0) = 8¢ (Low}) = Lo
wde = be (52) = e (Low}) = Loca) s = o (58) = 3 (Loa}) = Liya]
0 = 5 (5) = & (Ly}) = Ly} fon = o0 (5) = 5 (Loy}) = Luay!
oo = 2 (%) = & (Ly}) = Ly} o = (%) = & (Ly!) = Ley}
c’?b—QBIf:é%(a_é):c%(Iry}): Jffyz:'l %:%(%):%(Iﬂﬂ)—lsﬂc
%:%(%):%(Iw)_ xd £255_%(%):%(Ir)—lre
ser = o (50) = 35 Io) = Ly 5 = o (5) = & (Iye}) = Lzl
% = % (a_é) = % (Iy:ﬂzl) = Lyel; aadzalf = 6%” (%) = a% (Iyﬂle) = yf"’«"z1
gsale = % (%) = % (Iyyz‘l) = yeyz‘l 885281f = a% (a_i) = (’% (Iyyz'l) = yfyz‘l
8?‘281,‘ = c’% <8_JI£) = é% (Iy) = Iys
where

Lo=2I=Inr1  Ip=2I=1,r,  Lu=2L=Inx1  Lu=%&I,=1I,n

Lip=gple=Toatn  Ip=fply=Iny1  Lee=gl=Twy  De=g1ly=Iyn

Im:%]x: Lo ch:%Iy: Ly Ixf:aiflw: Ly ny:(%ly: Iy,
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