Applied Mathematics

Peter J. Olver
School of Mathematics
University of Minnesota
Minneapolis, MN 55455
olver@math.umn.edu
http://www.math.umn.edu/~olver

Chehrzad Shakiban
Department of Mathematics
University of St. Thomas
St. Paul, MN 55105-1096
c9shakiban@stthomas.edu
http://webcampus3.stthomas.edu/c9shakiban

Table of Contents

Chapter 1. Linear Algebra
 1.1. Solution of Linear Systems
 1.2. Matrices and Vectors
 Basic Matrix Arithmetic
 1.3. Gaussian Elimination — Regular Case
 Elementary Matrices
 The LU Factorization
 Forward and Back Substitution
 1.4. Pivoting and Permutations
 Permutation Matrices
 The Permuted LU Factorization
 1.5. Matrix Inverses
 Gauss–Jordan Elimination
 Solving Linear Systems with the Inverse
 The LDV Factorization
 1.6. Transposes and Symmetric Matrices
 Factorization of Symmetric Matrices
 1.7. Practical Linear Algebra
 Tridiagonal Matrices
 Pivoting Strategies
 1.8. General Linear Systems
 Homogeneous Systems
 1.9. Determinants

Chapter 2. Vector Spaces
 2.1. Vector Spaces
 2.2. Subspaces
 2.3. Span and Linear Independence
 Linear Independence and Dependence
 2.4. Bases
 2.5. The Fundamental Matrix Subspaces
 Kernel and Range
Chapter 3. Inner Products and Norms

3.1. Inner Products
 Inner Products on Function Space

3.2. Inequalities
 The Cauchy–Schwarz Inequality
 Orthogonal Vectors
 The Triangle Inequality

3.3. Norms
 Unit Vectors
 Equivalence of Norms

3.4. Positive Definite Matrices
 Gram Matrices

3.5. Completing the Square
 The Cholesky Factorization

3.6. Complex Vector Spaces
 Complex Numbers
 Complex Vector Spaces and Inner Products

Chapter 4. Minimization and Least Squares Approximation

4.1. Minimization Problems
 Equilibrium Mechanics
 Solution of Equations
 The Closest Point

4.2. Minimization of Quadratic Functions

4.3. The Closest Point

4.4. Least Squares

4.5. Data Fitting and Interpolation
 Polynomial Approximation and Interpolation
 Approximation and Interpolation by General Functions
 Weighted Least Squares
 Least Squares Approximation in Function Spaces

Chapter 5. Orthogonality

5.1. Orthogonal Bases
 Computations in Orthogonal Bases

5.2. The Gram–Schmidt Process
 A Modified Gram–Schmidt Process

5.3. Orthogonal Matrices
 The QR Factorization

5.4. Orthogonal Polynomials
The Legendre Polynomials
Other Systems of Orthogonal Polynomials

5.5. Orthogonal Projections and Least Squares
 Orthogonal Projection
 Orthogonal Least Squares
 Orthogonal Polynomials and Least Squares

5.6. Orthogonal Subspaces
 Orthogonality of the Fundamental Matrix Subspaces
 and the Fredholm Alternative

Chapter 6. Equilibrium

 6.1. Springs and Masses
 The Minimization Principle
 6.2. Electrical Networks
 The Minimization Principle and the Electrical–Mechanical Analogy
 6.3. Structures in Equilibrium
 Bars

Chapter 7. Linear Functions, Linear Transformations and Linear Systems

 7.1. Linear Functions
 Linear Operators
 The Space of Linear Functions
 Composition of Linear Functions
 Inverses
 7.2. Linear Transformations
 Change of Basis
 7.3. Affine Transformations and Isometries
 Isometry
 7.4. Linear Systems
 The Superposition Principle
 Inhomogeneous Systems
 Superposition Principles for Inhomogeneous Systems
 Complex Solutions to Real Systems
 7.5. Adjoints
 Self–Adjoint and Positive Definite Linear Functions
 Minimization

Chapter 8. Eigenvalues

 8.1. First Order Linear Systems of Ordinary Differential Equations
 The Scalar Case
 The Phase Plane
 8.2. Eigenvalues and Eigenvectors
 Basic Properties of Eigenvalues
 8.3. Eigenvector Bases and Diagonalization
Diagonalization

8.4. Incomplete Matrices and the Jordan Canonical Form
8.5. Eigenvalues of Symmetric Matrices
 The Spectral Theorem
 Optimization Principles
8.6. Singular Values

Chapter 9. Linear Dynamical Systems

9.1. Linear Dynamical Systems
 Existence and Uniqueness
 Complete Systems
 The General Case
9.2. Stability of Linear Systems
9.3. Two-Dimensional Systems
 Distinct Real Eigenvalues
 Complex Conjugate Eigenvalues
 Incomplete Double Real Eigenvalue
 Complete Double Real Eigenvalue
9.4. Dynamics of Structures
 Stable Structures
 Unstable Structures
 Systems with Different Masses
 Friction and Damping
9.5. Forcing and Resonance
 Electrical Circuits
 Forcing and Resonance in Systems
9.6. Matrix Exponentials
 Inhomogeneous Linear Systems
 Applications in Geometry

Chapter 10. Iteration of Linear Systems

10.1. Linear Iterative Systems
 Scalar Systems
 Powers of Matrices
10.2. Stability
 Fixed Points
10.3. Matrix Norms
 Explicit Formulae
 The Gerschgorin Circle Theorem
10.4. Markov Processes
10.5. Iterative Solution of Linear Systems
 The Jacobi Method
 The Gauss–Seidel Method
 Successive Over–Relaxation (SOR)
 Conjugate Gradients
10.6. Numerical Computation of Eigenvalues
 The Power Method
 The QR Algorithm
 Tridiagonalization

Chapter 11. Boundary Value Problems in One Dimension

11.1. Elastic Bars
11.2. The Green’s Function
 The Delta Function
 Calculus of Generalized Functions
 The Green’s Function
11.3. Adjoints and Minimum Principles
 Adjoints of Differential Operators
 Minimum Principles
 Inhomogeneous Boundary Conditions
11.4. Beams and Splines
 Splines
11.5. Sturm–Liouville Boundary Value Problems
11.6. Finite Elements
 Weak Solutions

Chapter 12. Fourier Series

12.1. Dynamical Equations of Continuous Media
12.2. Fourier Series
 Periodic Extensions
 Piecewise Continuous Functions
 The Convergence Theorem
 Even and Odd Functions
 Complex Fourier Series
 The Delta Function
12.3. Differentiation and Integration
 Integration of Fourier Series
 Differentiation of Fourier Series
12.4. Change of Scale
12.5. Convergence of the Fourier Series
 Convergence in Vector Spaces
 Uniform Convergence
 Smoothness and Decay
 Hilbert Space
 Convergence in Norm
 Completeness
 Pointwise Convergence

Chapter 13. Fourier Analysis

13.1. Discrete Fourier Series and the Fast Fourier Transform
Compression and Noise Removal
The Fast Fourier Transform

13.2. Wavelets
 The Haar Wavelets
 Modern Wavelets
 Solving the Dilation Equation

13.3. The Fourier Transform
 Derivatives and Integrals
 Applications to Differential Equations
 Convolution
 Fourier Transform on Hilbert Space
 The Heisenberg Uncertainty Principle

13.4. The Laplace Transform
 The Laplace Transform Calculus
 Applications to Initial Value Problems
 Convolution

Chapter 14. Vibration and Diffusion in One-Dimensional Media

14.1. The Diffusion and Heat Equations
 The Heat Equation
 Smoothing and Long Time Behavior
 Inhomogeneous Boundary Conditions
 The Heated Ring
 The Fundamental Solution

14.2. Similarity and Symmetry Methods
 The Inhomogeneous Heat Equation
 The Root Cellar Problem

14.3. The Wave Equation
 Forcing and Resonance

14.4. d’Alembert’s Solution of the Wave Equation
 Solutions on Bounded Intervals

14.5. Numerical Methods
 Finite Differences
 Numerical Solution Methods for the Heat Equation
 Numerical Solution Methods for the Wave Equation

Chapter 15. The Laplace Equation

15.1. The Laplace Equation in the Plane
 Classification of Linear Partial Differential Equations in the Plane
 Characteristics

15.2. Separation of Variables
 Polar Coordinates

15.3. The Green’s Function
 The Method of Images

15.4. Adjoints and Minimum Principles
Uniqueness
Adjoint and Boundary Conditions
Positive Definiteness and the Dirichlet Principle

15.5. Finite Elements
Finite Elements and Triangulation
The Finite Element Equations
Assembling the Elements
The Coefficient Vector and the Boundary Conditions
Inhomogeneous Boundary Conditions
Second Order Elliptic Boundary Value Problems

Chapter 16. Complex Analysis

16.1. Complex Variables
Examples of Complex Functions

16.2. Complex Differentiation
Power Series and Analyticity

16.3. Harmonic Functions
Applications to Fluid Mechanics

16.4. Conformal Mapping
Analytic Maps
Conformality
Composition and The Riemann Mapping Theorem
Annular Domains
Applications to Harmonic Functions and Laplace’s Equation
Applications to Fluid Flow
Poisson’s Equation and the Green’s Function

16.5. Complex Integration
Lift and Circulation

16.6. Cauchy’s Integral Formulae and The Calculus of Residues
Cauchy’s Integral Formula
Derivatives by Integration
The Calculus of Residues
The Residue Theorem
Evaluation of Real Integrals

Chapter 17. Dynamics of Planar Media

17.1. Diffusion in Planar Media
Derivation of the Diffusion Equation
Self-Adjoint Formulation

17.2. Solution Techniques for Diffusion Equations
Qualitative Properties
Inhomogeneous Boundary Conditions and Forcing

17.3. Explicit Solutions for the Heat Equation
Heating of a Rectangle
Heating of a Disk
17.4. The Fundamental Solution
17.5. The Planar Wave Equation
 Separation of Variables
17.6. Analytical Solutions of the Wave Equation
 Vibration of a Rectangular Drum
 Vibration of a Circular Drum
 Scaling and Symmetry
17.7. Nodal Curves

Chapter 18. Partial Differential Equations in Space
18.1. The Laplace and Poisson Equations
18.2. Separation of Variables
 Laplace’s Equation in a Ball
18.3. The Green’s Function
 The Green’s Function on the Entire Space
 Bounded Domains and the Method of Images
18.4. The Heat Equation in Three-Dimensional Media
 Heating of a Ball
 The Fundamental Solution to the Heat Equation
18.5. The Wave Equation in Three-Dimensional Media
 Vibrations of a Ball
18.6. Spherical Waves and Huygen’s Principle
 The Method of Descent

Chapter 19. Nonlinear Systems
19.1. Iteration of Functions
 Scalar Functions
 Quadratic Convergence
 Vector-Valued Iteration
19.2. Solution of Equations and Systems
 The Bisection Algorithm
 Fixed Point Methods
 Newton’s Method
 Systems of Equations
19.3. Optimization
 The Objective Function
 The Gradient
 Critical Points
 The Second Derivative Test
 Minimization of Scalar Functions
 Gradient Descent
 Conjugate gradients

Chapter 20. Nonlinear Ordinary Differential Equations
20.1. First Order Systems of Ordinary Differential Equations
Scalar Ordinary Differential Equations
First Order Systems
Higher Order Systems

20.2. Existence, Uniqueness, and Continuous Dependence
Existence
Uniqueness
Continuous Dependence

20.3. Stability
Stability of Scalar Differential Equations
Linearization and Stability
Conservative Systems
Lyapunov’s Method

20.4. Numerical Solution Methods
Euler’s Method
Taylor Methods
Error Analysis
An Equivalent Integral Equation
Implicit and Predictor–Corrector Methods
Runge–Kutta Methods
Stiff Differential Equations

Chapter 21. The Calculus of Variations

21.1. Examples of Variational Problems
Minimal Curves and Geodesics
Minimal Surfaces

21.2. The Simplest Variational Problem
The First Variation and the Euler–Lagrange Equation
Curves of Shortest Length
Minimal Surface of Revolution
The Brachistochrone Problem

21.3. The Second Variation

21.4. Multi-dimensional Variational Problems

21.5. Numerical Methods for Variational Problems
Finite Elements
Nonlinear Shooting

Chapter 22. Nonlinear Partial Differential Equations

22.1. Nonlinear Waves and Shocks
A Nonlinear Wave Equation

22.2. Nonlinear Diffusion
Burgers’ Equation
The Hopf–Cole Transformation
Viscosity Solutions

22.3. Dispersion and Solitons
The Korteweg–deVries Equation
22.4. Conclusion and Bon Voyage

Appendix A. Vector Calculus in Two Dimensions

A.1. Plane Curves
A.2. Planar Domains
A.3. Vector Fields
A.4. Gradient and Curl
A.5. Integrals on Curves
 Arc Length
 Arc Length Integrals
 Line Integrals of Vector Fields
 Flux
A.6. Double Integrals
A.7. Green’s Theorem

Appendix B. Vector Calculus in Three Dimensions

B.1. Dot and Cross Product
B.2. Curves
B.3. Line Integrals
 Arc Length
 Line Integrals of Vector Fields
B.4. Surfaces
 Tangents to Surfaces
B.5. Surface Integrals
 Surface Area
 Flux Integrals
B.6. Volume Integrals
 Change of Variables
B.7. Gradient, Divergence, and Curl
 The Gradient
 Divergence and Curl
 Interconnections and Connectedness
B.8. The Fundamental Integration Theorems
 The Fundamental Theorem for Line Integrals
 Stokes’ Theorem
 The Divergence Theorem

Appendix C. Series

C.1. Power Series
 Taylor’s Theorem
C.2. Laurent Series
C.3. Special Functions
 The Gamma Function
 Series Solutions of Ordinary Differential Equations
 Regular Points
The Airy Equation
The Legendre Equation
Regular Singular Points
Bessel’s Equation