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Fast gradient methods based global motion
estimation for video compression

Yosi Keller, Amir Averbuch,

Abstract— This paper presents a fast global motion esti-
mation (GME) algorithm based on gradient methods (GM),
which can be used for real-time applications, such as in
MPEG4 video compression. This approach improves the ex-
isting state-of-the-art GME algorithms by introducing two
major modi…cations: …rst, only a small subset (down-to 3%)
of the original image pixels is used in the estimation process.
Second, a interpolation-free formulation of the basic GM is
derived, further decreasing the computational complexity.
Experimental results show no loss of GME accuracy and
compression e¢ciency compared to the MPEG-4 veri…ca-
tion model, while reducing the computation complexity of
the GME by a factor of 20.
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I. Introduction

MPEG-4 is a new video compression standard providing
core technologies for e¢cient storage, transmission and ma-
nipulation of video data in multimedia environments [11],
[20]. Motion estimation algorithms calculate the motion
between successive video frames and predict the current
frame from previously transmitted frames using the mo-
tion information [7]. Global motion estimation (GME) al-
gorithms estimate a single parametric motion model [9] for
the whole frame which can be used within MPEG-4 to pro-
duce either static or dynamic sprites. Static sprites [17]
are mosaics containing the visual information of the ob-
jects which were visible over the sequence. While various
mosaic generation algorithms were developed [3], [4], [6],
[14], their applicability to general purpose video compres-
sion applications is limited by the signi…cant delay incurred
by frames accumulation and mosaic image coding (as in-
tra frames) [18]. Furthermore, the 8-parameters projec-
tive motion model used by the MPEG-4 coding standard
is suitable for a restricted range of camera motions [4].
Thus, each static sprite can be only used for a single short
video segment. Therefore, this paper concentrates on dy-
namic sprites while its results are also applicable to static
sprites. The dynamic sprite [21] coding scheme utilized
by the MPEG-4 veri…cation model, estimates the motion
between consecutive frames using a 6-parameters a¢ne mo-
tion model. A sprite is generated every time step by warp-
ing the previous frame according to the motion parameters
and used as a reference frame [19]. Further improvement is
achieved by …rst estimating both the global and local mo-
tions (using block matching) and then coding each macro-
block using the motion estimation mode which results in a
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lower prediction error [15], [16].

A comprehensive comparative survey by Barron et. al.
[1] found the family of gradient-based motion estimation
methods (GM), originally proposed by Horn and Schunck
[2], to perform especially well. The purpose of the GM
algorithm is to estimate the parameters vector p associ-
ated with the parametric image registration problem [3].
A critical implementation issue concerning the GME, is
its signi…cant computational complexity, making it useless
for real-time encoding application, especially when imple-
mented on low-power devices such as PDAs and cellular
phones. This paper o¤ers two modi…cations to the GM
algorithm, reducing its computational complexity by 20
times. First, only a small, selective sub-set of the image
pixels named Dominant Pixels, is used by the GM algo-
rithm. Second, the interpolation-free formulation of the
GM algorithm (IFGM) [13] allows for further complexity
reduction. These two algorithms are complexity-wise com-
plementary: each of them reduces the complexity of a dif-
ferent component within the original GM algorithm. Ex-
perimental results demonstrate the signi…cant complexity
reduction while maintaining the GME accuracy and video
compression e¢ciency.

The regular GM based GME algorithm is presented
in section II, while the Selective integration based GM
(SIGM) and Interpolation-free GM (IFGM) are introduced
in sections III and IV respectively. The resulting algorithm,
Fast GM, is presented in section V, while experimental re-
sults are given in section VI.

II. Gradient method based motion estimation

Let the two images I1 (x, y) and I2 (x, y) be re-
lated to each other by a parametric coordinates trans-
form: x
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under the transform in I1 and I2, respectively; p is the pa-
rameters set, and f1 and f2 are de…ning functions; i is just
the label of a location. For example, for the a¢ne motion
model,
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GM methodology [8], [10] estimates the motion param-
eters p by minimizing the intensity discrepancies between
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the input images as,
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where S is the set of coordinates over which the minimiza-
tion is carried.

The solution of Eq. 2 is based on a pixel-wise …rst order
Taylor expansion of I1 in terms of I2, around p = 0 as,
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Eq. 3 can be considered the linearization step of a Gauss-
Newton nonlinear minimization [22] of Eq. 2. By gathering
the pixel-wise equations similar to Eq. 3, an equation set
is formed and solved for p [3], [5].

p =
¡
HT H

¢¡1
HT It (4)

where
It = ((It)1 . . . (It)n)T (5)

and

(It)i = I1

³
x

(1)
i ,y

(1)
i

´
¡I2

³
x

(2)
i

³
p, x

(1)
i ,y

(1)
i

´
,y

(2)
i

³
p, x

(1)
i ,y

(1)
i

´´

(6)
The partial derivatives according to the motion param-

eters are calculated using the derivative chain rule
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are related to the parametric motion

model used. For the a¢ne motion model we get
Due to the non-linear nature of Eq. 2, it is solved it-

eratively where Eq. 4. The basic GM iteration, which is
marked as “Single Iteration” and iterative re…nement phase
are presented in Fig. 1.

In order to improve the convergence properties, a stan-
dard Gaussian pyramid [3] is constructed using scaling fac-
tors of 2 or 3 [6], [10]. Hence, the GM algorithm starts
at the coarsest resolution scale of the pyramid, then fol-
lows the subsequent levels in a coarse-to-…ne approach. At
each resolution scale, Eq. 4 is iterated until a maximal
number of iterations is reached or the magnitude of the
update of translation parameters reaches a predetermined

I2=Warp(I2,pn)

Calculate HTH, HTIt

Solve p=(HTH)-1 HTIt

pn+1=pn+ p

||pn+1-pn< ||
or

n>nmax

I2 I1

Si
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 it
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pn+1

pn=pn+1

no
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Fig. 1. Block diagram of the basic and iterative GM formulations.
For n = 0, p0 is given as an initial guess and ¢p is the iterative
update after each iteration.

threshold. Finally, when the procedure stops at the …nest
resolution scale, the …nal motion parameters are obtained.
In video compression applications the induced relative mo-
tion is usually small, therefore, less than 10 iterations are
needed for an accurate registration and convergence. In
situations where larger motion is anticipated, a bootstrap-
ping procedure can be applied [9].

III. Selective integration based GM (SIGM)

The evaluation of Eq. 4 at each GM iteration uses S ,
the complete set of pixels common to I1 and I2. Hence,
the resulting equation is highly overdetermined. At QCIF1

frame size (176 £ 144 pixels) there are 25,344 equations,
as opposed to 6 or 8 unknown parameters related to a¢ne
and perspective motion models, respectively. The SIGM
evaluates Eq. 4 using a small subset (down to 3%) of S .

1An industry acronym for Quarter Common Intermediate Format,
a videoconferencing format that speci…es data rates of 30 frames per
second (fps), with each frame containing 144 lines and 176 pixels per
line. This is one fourth the resolution of Full CIF.
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Fig. 2. An example of the locations of the subset of pixels used for
the global motion computation. The pixel set is superimposed
on the …rst frame of the Stefan video sequence.

This set is denoted bS . Following the GM scheme in section
II, the SIGM algorithm uses a multiresolution pyramid of
the input images, where the pixel set bS is chosen at the
coarsest resolution scale, and tracked using a coarse-to-…ne
formulation. The pixel subset selection process is described
in section III-A No other modi…cations are made to the
procedure in section II. It is used in the initialization and
multiscale embedding of the SIGM, which is presented in
section III-B and illustrated in Fig. 3. The iterative for-
mulation is described in section III-C and Fig. 4.

A. Pixel subset selection

The pixel subset bS is chosen by …nding the pixels having
the largest gradient magnitude. In order to avoid numeri-
cal instabilities caused by the concentration of the subset
bS in small image regions. The image is divided into 100
sub-regions, where at each sub-region the top 10% are cho-
sen. A similar approach was used for feature tracking by
Dellaert et-al [12], while Wei et-al [23] improved the GM
robustness by using selective integration where the selec-
tion criterion was based on temporal gradient sorting. This
procedure was also used by [9]. Figure 2 illustrates the pro-
posed pixel selection process, which was applied to the …rst
frame of the Stefan sequence. The uniform distribution of
the feature points is evident.

B. SIGM multiscale scheme

This section presents the multiscale SIGM registration
scheme which uses the iterative re…nement algorithm in
section III-C.
1. Similarly to section II, a resolution pyramid of the input
images, I1 and I2, is constructed.
2. At the lowest resolution level Scale = 0, N pixels in
I2, having the largest gradient magnitude are added to the
pixel set bS2 (Scale), following the procedure described in
section III-A and Fig. 2.
3. The pixel set bS2 (Scale) is used as an input to the it-
erative re…nement algorithm in section III-C, where the

Gaussian resolution Pyramid
{I1,I2}Scale

Scale=0,..,Scalemax

I1(Scale)
I2(Scale)

| 2(Scale)|

I1 I2

Scale = 0Find | 2(0)|

I2(0) {I1,I2}Scale

Iterative SIGM

P0

Scale = Scale +1

P0

Scale > Scalemax

upscale
P0,

I1,I2

No

Yes

P0

Fig. 3. SIGM multiscale image registration ‡ow chart. The scheme
utilizes the iterative registration presented in Fig. 4.

initial estimate of the motion can be either set to zero or
calculated according to the motion of the previous frames.
4. The pixel set bS2 (Scale) and the result of step 2 are
upscaled and used as an input to the calculation of steps 2
at a higher resolution scale, until the original image size is
reached.

C. SIGM iterative re…nement

At each resolution scale the initial estimate of the regis-
tration is re…ned using the following procedure:
1. At the …rst iteration in each resolution scale (n = 0),
the matrix

¡
HT H

¢
is calculated according to Eqs. 6 and 7

using the pixel set cS2.
2. The pixel set cS1, which is a warping of I1 towards the
pixel set cS2, is calculated using the inverse of the current
estimate p¡1

n , n ¸ 0. For n = 0, p0 is given as input.
3. If a pixel in cS2, does not have a corresponding pixel in
I1, (its coordinates fall outside the I1 frame) it is extracted
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from cS2 and its contribution to the matrix
¡
HT H

¢
is sub-

tracted.
4. The vector

¡
HT It

¢
is calculated according to cS1 and cS2.

5. Equation 4 is solved for ¢p using
¡
HT H

¢
and

¡
HT It

¢

calculated above.
6. ¢p, the outcome of step 2 is used to update the solution

pn+1 = ¢p + pn n ¸ 0.

7. Step 2 is repeated until one of the following stopping
criteria is met:

(a) At most Nmax iterations were performed
or
8. The process is stopped if the translation parameters
within the updated term ¢p reach a predetermined thresh-
old which corresponds to the required registration accuracy.
A threshold of 0.1 pixel was used as a practical limit to the
motion estimation accuracy [13].

D. Complexity analysis

Next we provide an estimation of the GM algo-
rithm’s complexity and a comparison to the SIGM. Let
CGM (Scale) be the total complexity of a regular GM at a
certain resolution scale Scale, then

CGM (Scale) = KGM jS2jNIterations (1)

where

KGM the number of operations per pixel.
jS2j the number of pixels in the set S2.
NIterations the number of iterations per resolution scale.

Hence, the total complexity of the iterative multi scale
process becomes

CGM =
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CGM (m)
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ScaleStep2

¢m ¢ CGM (0)

= NIterations ¢ KGM ¢ jS2 (0)j ¢ (ScaleStep)2Nscales ¡ 1

(ScaleStep)2 ¡ 1

where

CGM (0)
the GM complexity at the coarsest
resolution scale.

ScaleStep
the resolution scale step (the image’s
downscaling factor in each dimension).

ScaleStep2 the ratio of the number of pixels
between successive resolution scales.

jS2 (0)j the number of pixel used for the GM
estimation at the lowest resolution scale.

Therefore, the SIGM signi…cantly reduces the GM com-
plexity:
1. The matrix

¡
HT H

¢
SIGM

is calculated using a small

subset of pixels cS2, which is much smaller than the pixel set

Build HTH using I1,I2, 2
Set n=0

I1 I2

Project 2(P0) 1

calc HTIt

P0
P=0

n = n +1

P

Pn+1 = Pn + P

n > Niterations
or

| P|<

No

Yes

Pn+1

2

refine 2 and HTH

1

solve (HTH) P=HTIt

HTH HTIt

P0

Fig. 4. A ‡ow chart of the SIGM iterative image registration. The
‡ow chart follows the procedure described in section III-C.

S2 used by the GM in section II. The complexity reduction
is

C(HT H)SIGM

C(HT H)GM

=

¯̄
¯cS2

¯̄
¯

jS2j
. (2)

2. I2 remains static throughout the iterative solution pro-
cess (I1 is being warped). Hence, there is no need to recal-
culate the matrix

¡
HT H

¢
SIGM

in each iteration. It has to
be calculated just once at the …rst iteration of each resolu-
tion scale.

In the SIGM case the matrix
¡
HT H

¢
has to be esti-

mated just once, while
¡
HT It

¢
has to be evaluated at each

iteration
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corresponding pixel in I1

rs resolution scale.

The total SIGM complexity becomes

CSIGM =

Nscales¡1X

m=0

CSIGM (m) . (4)

Following Eq. 3, CSIGM is not a function of the resolu-
tion scale Scale, therefore we have

CSIGM =

Nscales¡1X

m=0

CSIGM (0) (5)

= CGM (0) ¢ Nscales.

For a typical global motion estimation in a video se-
quence (320 £ 240), using three dyadic resolution scales
(Nscales = 2, ScaleStep = 2) and 10 iterations
(NIterations = 10) we get:

jS2 (0)j = 320 £ 240/4 = 19, 200,¯̄
¯cS2 (0)

¯̄
¯ = jS2 (0)j ¢ 10% = 1, 920,

¢cS2 = 10%,
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GM = (No. motion parameters)

+(4 multiplications to interpolate It),

K
(HT H)
GM = no. multiplications needed to evaluate

K
(HT H)
GM , since

¡
HT H

¢
is symmetric.

The complexity analysis shown in Table I demonstrates a
signi…cant complexity reduction achieved by the SIGM es-
pecially for the advanced motion models, such as the a¢ne
and the projective. It should be noted that for the a¢ne
motion model we have

K
(HT It)
GM ¢ NIterations À K

(HT H)
GM (7)

hence, the a¢ne motion estimation complexity is domi-
nated by the complexity of evaluating HT It, which can
be reduced using the Interpolation-free GM algorithm de-
scribed in the section IV.

IV. Interpolation-free motion estimation

In order to reduce the complexity of the GM algorithms,
we reformulate Eq. 3 such that no warping is needed for
the evaluation of I1(x

(1)
i , y

(1)
i ) while maintaining the same

accuracy [13]. We start by rewriting the regular GM for-
mulation for the 1D case in section IV-A. Then, the 1D
interpolation-free reformulation for translational motion is
presented in section IV-A, while its extension to 2D and
general motion models is shown in section IV-C.

A. 1D Gradient Methods formulation

We consider the registration of two one-dimensional dis-
crete signals I1 (x) and I2 (x) sharing some common inter-
val. Using a 1D formulation of section II we get
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By gathering the pixel-wise equations
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an equation set is formulated

Hp = It (5)

and solved in the least-square sense similar to Eq. 4.

B. 1D interpolation-free Gradient Methods formulation

Next we reformulate Eq. 3 to account for non-integral
coordinate values. Let x
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Translation A¢ne Projectiveµ
K

(HtH)
GM ,K

(HtIt)
GM ,K

GM

¶
(3, 7, 10) (21, 10, 31) (46, 12, 58)

GM 9.6 ¢ 106 30 ¢ 106 56 ¢ 106

SIGM 14 ¢ 104 23 ¢ 104 33 ¢ 104

Complexity gain: CGM

CSIGM
¼ 70 ¼ 130 ¼ 170

TABLE I

Performance comparison between the SIGM and GM showing the significant computational complexity reduction achieved

by the SIGM.
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By comparing between Eqs. 3 and 12 we note that the left-
hand-side of Eq. 3 uses 2 ‡oating-point multiplications to
interpolate the value of I1(x

(1)
i ) at non-integral coordinates,

while the interpolation-free formulation in Eq. 12 uses a
single ‡oating-point multiplication.

C. Generalization to 2D signals and general motion models

Equation 3 is reformulated to estimate the input image
at integral coordinates
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D. Algorithm Flow
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2. Iti is calculated according to Eq. 6 and it is shifted
according to Eq. 18:
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k´
(20)
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(2)
i )

∂ (¢y)

³
by ¡

j
y
(1)
i

k´
.

3. Equation 20 is solved for p

¡
HT H

¢
p = HT bIt. (21)

4. The interpolation-free GM returns p as its result.

E. Complexity analysis

Following Eq. 18 and Table II, we established that the
interpolation-free GM reduced the complexity related to
the evaluations the vector

¡
HT It

¢
in Eq. 4. 2 ‡oating point

multiplications per entry are needed rather than 4. This
improvement is insigni…cant when the regular GM is used,

since its complexity is dominated by K
(HT H)
GM . However,

when the IFGM is implemented together with the SIGM a
signi…cant additional improvement is achieved.

V. Fast GM algorithm

In order to reduce the complexity of the GM algorithm,
the formulations presented in Sections III and IV were in-
tegrated into the Fast GM algorithm:
1. A multiscale pyramid is built following section II.
2. Utilizing the SIGM algorithm (section III), a set of
points cS2, is selected in the image I2 at the coarsest reso-
lution scale.
3. Starting with the coarsest resolution scale Eq. 4 is
solved iteratively according to the IFGM in section IV-D.
4. The iterative and multiscale re…nement were conducted
according to the SIGM, where the motion estimation re-
sults and pixel set cS2, were propagated through the reso-
lution pyramid in a coarse-to-…ne manner.

Thus, the evaluation of HT H is optimized by the SIGM
while the evaluation of HT It is optimized by the IFGM.
The complexity estimation presented in Table III, shows
the overall improvement, provided by the Fast GM, to be
of O (100). The complexity was estimated for the test case
introduced in Table I. Most of the improvement is achieved
by the SIGM, while the IFGM accomplishes an additional
improvement of 10-15%.

A¢ne Projective
GM 30 ¢ 106 56 ¢ 106

SIGM 23 ¢ 104 33 ¢ 104

Fast GM 20 ¢ 104 29 ¢ 104

CFast GM

CGM
0.7% 0.5%

CFast GM

CSIGM
87% 88%

TABLE III

Performance comparison between the SIGM and GM:

approximated number of multiplications needed for the

scenario introduced in Table I.

VI. Experimental Results

A¢ne motion is utilized by the MPEG-4 video compres-
sion standard as its main GME motion model. In order to
explore the Fast GM coding and its associated complexity
performances, the proposed scheme was integrated into the
MPEG-4 Veri…cation Model software [11] and compared
to the GME algorithm implemented in it, while no other
modi…cations were made. Simulations have been carried
out using the sequences shown in Fig. 5: Mobile, Stefan
and Coastguard at CIF size (352£240). Both the Fast GM
and regular GM used the 3-step initialization method de-
scribed in [9]. Two resolution scales were constructed using
a three-tap …lter

£
1
3

1
3

1
3

¤
and the spatial derivatives

were approximated using the mask
£

1
2 0 ¡1

2

¤
. The it-

erative termination threshold at each resolution scale was
a translation update of 10¡1 or at most 10 iterations. The
pixel subset

¯̄
¯cS2

¯̄
¯ used by the fast GM, was 10% of the pix-

els in the lowest resolution scale, which amounts to 2.5%
of the pixels at the original resolution scale. The test se-
quences were encoded in interframe mode (IPPPPP...) and
two …xed quantizer sizes Q = 10 and Q = 31. Q = 31 cor-
responds to measuring the Global motion compensation
(GMC) error directly, while Q = 10 relates to a typical
compression scenario. The coding e¢ciency results of the
MPEG-4 using the Fast GM were compared to those of the
regular GM and the non-GMC compression mode. The
results shown in Fig. 6 and Table IV establish that the
Fast GM achieves the same coding e¢ciency as the regu-
lar GM while exhibiting 20 times less computational com-
plexity. In both quantizer settings, the di¤erence in the
compressed frame size was no more than 2-3%. Figure 7.a
frames 175-190 and 230–270, present a situation where the
use of GME substantially improves the compression ratio as
the encoded frame sizes of the GME modes (red and blue
graphs) are considerably smaller then those of the non-
GME mode (green graph). In these sub-sequences, signi…-
cant global motion occurs within the Stefan sequence as the
player rushes to the net. Thus, the GME is able to smooth
the bitrate needed to encode the whole sequence at a …xed
quantizer (quality). In the Coastguard sequence (Fig. 6.b)
the improvement caused by the GME is less signi…cant,
as the global motion in this sequence is a slow uniform
translational motion. This type of motions are e¢ciently
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CHtIt

CHtIt

NParam = 6, NIterations = 10

jS2j = 176 £ 144,
jcS2j
jS2j = 10%

GM jS2jNIterations (NParam + 4) 2.5¢106

IFGM jS2jNIterations (NParam + 2) 2.0¢106

CIFGM

CGM

NP aram+2
NP aram+4 0.8

TABLE II

Performance comparison of affine motion. The regular GM was taken as the reference CPU complexity. The complexity

related to the calculation of HT It is reduced by 20%.

compressed by the non-GME mode, since the MPEG-4
standard utilizes di¤erential coding of motion vectors [11],
[20]. In particular, Fig. 7.b presents a sub-sequence of the
Coastguard, where there is no signi…cant global motion,
yet the Fast GM achieves similar results to the regular
GM using 20 fold less computational complexity. Simi-
lar results can be observed in Fig. 6.c (Mobile sequence)
where a dominant, very slow translational background mo-
tion exists. For the Stefan and Coastguard sequence the
average compression ratio was improved, while the com-
pression of Mobile sequence resulted in a decrease of the
compression ratio. This occurs since the GME mode is
switched onno¤ on a macro-block basis within the MPEG-
4 veri…cation model, based on their reconstruction error.
In this procedure the actual coding overhead of the GME
parameters is not taken into account. Therefore, this prob-
lem can be easily overcome by using either a two-pass en-
coding process or a GME switching algorithm taking into
account the coding overhead. Table V presents the experi-
mental timing results of the proposed algorithm recorded.
The execution time of the GME module were measured
directly using the built-in Microsoft Visual C++ pro…ler
[25]. Overall compression performance was measured by a
stop-watch over a 300 frames period for each sequence. Our
implementation uses standard C++ without any assembly-
level optimizations and in order to avoid the performance
bias caused by disk and memory caching [24], each test
was run 10 times and the results were averaged. The re-
sults show that the proposed GME module achieves the
expected computational complexity gains presented in Ta-
ble IV. The overall performance was only improved by a
factor of approximately 4, since other components within
the compression algorithm became complexity-wise domi-

nant. Several sizes of
¯̄
¯cS2

¯̄
¯ were tested, for jcS2j

jS2j = 20% the
compression results were identical to the results presented

above, while for smaller pixel set sizes
µ

jcS2j
jS2j = 5%, 2%

¶
a

decrease of the compression ratio was noticed. A Pentium
PC P800MHz was used for the timing experiments.

We conclude that in sequences where a signi…cant global
motion is present, the Fast GM exhibits compression re-
sults similar to the regular GM, while using signi…cantly
less (upto 33 fold) less computational complexity. In Sub-
sequences where using GME does not result in compression

ratio improvement, the Fast GM may produce lower com-
pression ratios compared to the regular GM upto 10%.

VII. Conclusions and Future Work

In this paper we proposed a new motion estimation al-
gorithm based on gradient methods, which signi…cantly re-
duces the complexity of state-of-the-art Global motion es-
timation (GME) algorithms, while achieving similar accu-
racy. This property makes it especially suitable for low-
power GME applications such as video compression. The
theoretical complexity analysis is back up by experimental
results, which were obtained using the MPEG-4 Veri…ca-
tion Model. The algorithm can also be used to accelerate
image mosaics production and virtual reality applications
[3]. In order to avoid compression ratio reductions due to
sequences with no inherent global motion, we intend to de-
velop a better algorithm for choosing when to use the GME
mode.
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Fig. 6. MPEG4 Compression results using the Fast GM, regular GM and non-GMC compression modes for (a) Stefan, (b) Coastguard and
(b) Mobile sequences. The sequences were encoded using Q = 31, thus the compression results are directly related to the GMC e¢ciency.
The Fast GM provides compression results very similar to the regular GM, while utilizing 20 times less computational complexity.
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Fig. 7. MPEG4 Compression results for sub-sequences within the sequences in Fig. 6. (a) In this subsequence of Stefan, a global motion
occurs as the player rushes to the net. Using GME results in a signi…cant reduction in the encoded frame size. (b) A subsequence of
Fig. 6.b,due to signi…cant occlusion in the scene the improvement caused of the Fast GM is 10% less than the regular GM, but the
computational complexity is less by 20 fold.
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