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We present a Domain Decomposition non-iterative solver for the Poisson equa-
tion in a 3-D rectangular box. The solution domain is divided into mostly
parallelepiped subdomains. In each subdomain a particular solution of the non-
homogeneous equation is first computed by a fast spectral method. This method is
based on the application of the discrete Fourier transform accompanied by a sub-
traction technique. For high accuracy the subdomain boundary conditions must
be compatible with the specified inhomogeneous right hand side at the edges of all
the interfaces. In the following steps the partial solutions are hierarchically
matched. At each step pairs of adjacent subdomains are merged into larger units.
In this paper we present the matching algorithm for two boxes which is a basis of
the domain decomposition scheme. The hierarchical approach is convenient for
parallelization and minimizes the global communication. The algorithm requires
O(N3 logN) operations, whereN is the number of grid points in each direction.

KEY WORDS: 3-D Poisson solver; modified Fourier method; domain decom-
position.

1. INTRODUCTION

Fast and accurate solution of elliptic equations is an important step
towards resolution of problems which appear in computational physics or
fluid dynamics (CFD). These equations arise in the determination of the
pressure field for incompressible CFD, in the implicit solution of viscous
and heat transfer problems, in the solution of the Maxwell equations for
lithographic exposure, in the solution of reaction-diffusion equations for
baking and dissolution processes in semiconductor manufacture, and in



many other applications. For instance, the semi-implicit discretization in
time (see [10]) of the incompressible Navier–Stokes equations gives rise to
one Poisson equation for the pressure and three modified Helmholtz equa-
tions for the momentum equations.
We present a non-iterative domain decomposition algorithm for a high

order (spectral) solution of the 3-D Poisson equation. Most Poisson and
Laplace solvers were initially developed for the 2-D case, such as Fast
Multipole Method (FMM) in [9], the boundary integral method in [11]
and modified Fourier method in [3, 4]. An adaptive algorithm for a fast
solution of the 2-D Poisson equation by decomposition of the domain into
square domains and the subsequent matching of these solutions by the
FFM was developed in [8].
The present 3-D algorithm is based on the fast spectral Poisson solver

developed in [5]. It incorporates the application of the FFT with a preli-
minary subtraction technique. In this paper we generalize the algorithm of
[2] to 3-D case. The efficiency of the algorithm is especially vital for 3-D
problems which usually require heavy computations. The method which is
presented here enjoys the properties of the 2-D algorithm: fast convergence
(i.e., small N necessary to achieve the prescribed accuracy) and comparati-
vely small number of operations per point (O(logN)).
We present a high order ‘‘corrected’’ 3-D Fourier spectral algorithm

for the solution of elliptic equations based on domain decomposition.
Similar algorithms in 2-D case were developed in [2, 8]. For illustration we
consider a box with eight subdomains (see Fig. 1).
We solve the Poisson equation

Du=uxx+uyy+uzz=f(x, y, z) (1)

in 3-D domain W with Dirichlet

u=F(x, y, z) on “W (2)

boundary conditions by the Domain Decomposition (DD) methods. We
assume that F is twice differentiable and compatible with the right hand
side in the corners.
The proposed algorithm consists of the following steps.

Fig. 1. The domain is decomposed into 8 subdomains.
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Step 1. Introduction of consistent boundary conditions at the interfaces.
Each subdomain is covered by a N×N×N grid. The right hand side of the
Poisson equation is evaluated on the grid knots and Dirichlet boundary
conditions j are determined at the interfaces, taking care to avoid sin-
gularities at the corners and edges. These boundary conditions in each
subdomain match for adjacent subdomains and also match the right hand
side at the edges where the Laplacian can be computed by the boundary
conditions.
Step 2. Solution of the Poisson equation in each subdomain with the

prescribed boundary conditions. The solution of the Poisson equation is
found in each subdomain using modified Fourier spectral method of high
accuracy developed in [5, 6]. The complexity of this step is O(N3 logN).
Step 3. Computation of the jumps of the first derivative at the interfaces.

The solution obtained with the prescribed boundary conditions has dis-
continuities in the normal derivatives at interfaces. In order to remove
these discontinuities the difference between the first derivatives on the two
sides of the interfaces is computed.
Step 4. Matching of discontinuities. Harmonic functions are added to

both sides of each interface. In this procedure and the successive matching
procedures the ‘‘correction’’ functions can be evaluated only on the
boundaries of two adjacent (merged) subdomains. The accumulation of all
the corrections determines the final local boundary conditions. The com-
plexity of this step is O(k2N2 logN), where k is the number of boxes that
are matched simultaneously, N is the number of collocation points in each
direction in each box.
Step 5. Solution of the homogeneous equations in subdomains. The

Laplace equation is solved in each subdomain with the boundary condi-
tions which were determined at the previous step. Combining this result
with the solution of the Poisson equation leads to a smooth global solution.
The complexity of this step is O(N3 logN).
Step 6. Global solution. The smooth global solution which was

computed at the previous step does not match the prescribed values at the
boundaries. A global Laplace equation is solved to satisfy the prescribed
boundary conditions of the global domain. The complexity of this step is
O(N3 logN).

In our previous work by [5, 6] we showed that the solution in a 3-D
box (i.e., in each subdomain) can be computed to high order accuracy
(corresponding to the second, fourth order of accuracy etc.) depending on
the order of our ‘‘subtraction procedure.’’
The interface jump removal can become inexpensive if initially (and

later in each step) only adjacent boxes are matched. The present hierarchi-
cal approach matching only two adjacent boxes at each level requires only
local corrections at the boundaries of these boxes, such that only the solu-
tion in the adjacent subdomains are coupled at each matching step, then
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Fig. 2. The domain is decomposed into L subdomains (here L=4).

these joint subdomains are matched etc. If originally we had k3 3-D sub-
domains, then after 3 log k steps we obtain a smooth global solution.
In this paper we present the basic algorithm which is the solution of

the Poisson equation and matching of solution in two adjacent boxes. Then
the matching of 3-D box divided into eight subdomains (see Fig. 1) can be
completed in three steps: first box 1 is matched with box 2, 3 with 4, 5 with
6, 7 with 8. Then the merged box 1, 2 is matched with 3, 4 and 5, 6 with
7, 8. Finally, the whole slice 1, 2, 3, 4 is patched to 5, 6, 7, 8.
For L boxes in one line (see Fig. 2) the hierarchical matching takes

log L steps. Each original or merged subdomain is matched to an adjacent
subdomain. When non-hierarchical matching was performed, the influence
of each derivative jump should be computed at each interface.

2. BOUNDARY CONDITIONS AT THE INTERFACES

Boundary conditions at the interfaces should satisfy the Poisson equa-
tion at the edges. First consider the simplest case when two subdomains are
matched and the boundary conditions are defined at x=0, 2, y=0, 1,
z=0, 1. Thus we have to introduce the boundary conditions only at the
interface x=1: u(1, y, z)=j(y, z).
In the right hand side of the following equality

“
2u
“y2
(1, y, 0)+

“
2u
“z2
(1, y, 0)=f(1, y, 0)−

“
2u
“x2
(1, y, 0) — g1(y) (3)

the first function is known and the second one can be computed by the
boundary condition at the interface z=0. Similarly

“
2u
“y2
(1, y, 1)+

“
2u
“z2
(1, y, 1)=f(1, y, 1)−

“
2u
“x2
(1, y, 1) — g2(y) (4)

“
2u
“y2
(1, 0, z)+

“
2u
“z2
(1, 1, z)=g3(z),

“
2u
“y2
(1, 1, z)+

“
2u
“z2
(1, 1, z)=g4(z)

(5)

are evaluated. Then the 2-D function j(y, z) satisfies the Poisson equation

Dj(y, z)=g(y, z) (6)

The function j(y, z) is known at the wire frame ABCD together with its
2-D Laplacian g. We should construct a smooth function g inside the
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rectangle ABCD and assume j(y, z) is a solution of (6) with the above
boundary conditions at the frame ABCD. One can obtain j as a solution
of a biharmonic equation.
Function g(x, y) is smooth and satisfies at the frames of the interface

g(y, 0)=g1(y), g(y, 1)=g2(y), g(0, z)=g3(z), g(1, z)=g4(z)
(7)

We construct a smooth function g satisfying boundary conditions (7).
In principle we could consider g to be a harmonic function if the following
equality were satisfied at corner (1, 1) in (y, z)

a=
“
2g1
“y2
(1)=−

“
2g3
“z2
(1)=−b (8)

and the same in all the other corners. However generally a ] −b.
Nevertheless g can be presented as a sum of a known function h which
subtracts Laplacian in the corners and some harmonic function. We can
subtract the Laplacian in each corner separately. Any function that
vanishes at all the corners and has vanishing second derivatives in all the
corners but (1, 1) can be chosen as a subtraction function h(1, 1). For
example, the difference of the normalized hyperbolic sine functions of y
vanishes in all the corners and has vanishing second derivatives for y=0.
So the function z(sinh(l1 y)/sinh l1− sinh(l2 y)/sinh l2) vanishes in the
corners and has vanishing second derivatives in z everywhere and in y for
z=0 or y=0. Hence the function

h(1, 1)(y, z)=
a+b
l21−l

2
2

1 sinh(l1 y)
sinh l1

−
sinh(l2 y)
sinh l2
2 (9)

has the same Laplacian at (1, 1) as g. The subtraction of h(1, 1) (9) does not
change the Laplacian in the other corners. Three other corners are treated
similarly. Then g−h(1, 1)−h(1, 0)−h(0, 1)−h(0, 0) can be constructed as a har-
monic function with boundary conditions obtained as a difference. Once g
is known then j(y, z) is assumed to be a solution of the 2-D Poisson
equation (6).

3. MATCHING OF BOXES

After we have found a solution of the Poisson equation in each sub-
domain, there is a jump in the first derivative in x-direction. To match the
solutions, we add symmetric harmonic functions to the solution. Among
harmonic functions, multiplications of sine and hyperbolic sine functions
are appropriate for matching and subtraction, see [2, 3, 5, 6]. These func-
tions vanish at zero, in addition, the hyperbolic sine function quickly
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decays when approaching zero. The matching is performed in the following
way. Let the jump in the first derivative be

“u
“x
(1+, y, z)−

“u
“x
(1− , y, z)=f(y, z) (10)

Since the first derivative in x is continuous at the frame x=1, y=0, 1 or
z=0, 1, then f(y, z) vanishes at the boundary. Then the second derivative
of f in z is periodic at the boundaries z=0, 1, 0 [ y [ 1, and so is the
second derivative of f in y at the boundaries y=0, 1, 0 [ z [ 1. We expand
the second derivative into the sine series

“
2f

“z2
(y, 0)=C

k
ak sin(pky) (11)

After the following harmonic functions are added to the solution

C
k

ak
2(l21−l

2
2)
sin(pky) 5sin(l1(1−z))

sin(l1)
sinh(`l21+p

2k2 (2−x))

`l21+p
2k2 cosh(`l21+p

2k2)

−
sin(l2(1−z))
sin(l2)

sinh(`l22+p
2k2 (2−x))

`l22+p
2k2 cosh(`l22+p

2k2)
6 (12)

for x \ 1 and a symmetric with respect to the plane x=1 function for
x [ 1, the second derivative of the solution in y is matched at the edge
y=0, 0 [ z [ 1. Function (12) and a symmetric one vanish at the interfaces
x=0, 2. Similar functions are added for three other boundaries.
After this the remaining jump in the derivative f1(y, z) vanishes along

all the boundary together with its second derivatives in y and in z. Thus the
function f1(y, z) can be accurately expanded into 2-D sine series

f1(y, z)=C
i

C
k
aik sin(piy) sin(pkz) (13)

Then after adding the function

C
i

C
k

1
2
aik sin(piy) sin(pkz)

sinh(p`i2+k2 (2−x))

p`i2+k2 cosh(p`i2+k2)
(14)

for x \ 1 and a symmetric with respect to the plane x=1 function for x [ 1
we obtain the matched first derivative in x at x=1. Function (14) is harmo-
nic, provides an appropriate derivative jump and, besides, vanishes at all
the interfaces except x=1 (see Fig. 3). Similarly the derivative is matched
at the other interfaces. Certainly we do not evaluate all the ‘‘addition’’
functions in all the domain but at the boundary and other interfaces only.
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Fig. 3. We define the primary values at the interface x=1; at the frame of the interface the
values and the second normal derivatives are known.

Afterwards the sum of values of all these functions is computed and the
Laplace equation with the corresponding boundary conditions is solved.
The addition of this solution to the previous ones in each subdomain
matches the first derivative of the solution at interfaces, i.e., we obtain a
smooth solution.

4. NUMERICAL RESULTS

Assume that u is the exact solution and u − is the computed solution.
Let ui and u

−

i be the values of u and u
−

i in the collocation points, respec-
tively. In the following examples we will use the following measures to
estimate the errors:

eMAX=max ||u
−

i−ui ||, eMSQ==;
N
i=1 (u

−

i−ui)
2

n
, eL2==;

N
i=1 (u

−

i−ui)
2

;N
i=1 u

2
i

Example 1. We solve the Poisson equation in [0, 1]×[0, 1]×[0, 2]
with the right hand side and the boundary conditions corresponding to the
exact solution u(x, y, z)=cos(x−0.4) cos(y−0.5) cos(z−1.0). Numerical
results are presented in Table I.

Example 2. We solve the Poisson equation in [0, 1]×[0, 1]×[0, 2]
with the right hand side and the boundary conditions corresponding to the
exact solution u(x, y, z)=exp{−5((x−0.4)2+(y−0.5)2+z2)}. Numerical
results are presented in Table II.

Table I. MAX, MSQ andL2 Errors for the Solution of the Poisson Equation by Matching
Two Boxes for the Exact Solution u(x, y, z)=cos(x−0.4) cos(y−0.5) cos(z−1.0)

Nx×Ny×Nz eMAX eMSQ eL2

8×8×8 2.7e-5 5.2e-6 2.1e-5
16×16×16 1.3e-6 2.5e-7 9.7e-7
32×32×32 9.7e-8 2.0e-8 7.6e-8
64×64×64 6.7e-9 1.4e-9 5.5e-9

A Hierarchical 3-D Poisson Modified Fourier Solver by Domain Decomposition 477



Table II. MAX, MSQ andL2 Errors for the Solution of the Poisson Equation by Matching
Two Boxes for the Exact Solution Being a Steep Gaussian Function

u(x, y, z)=exp{−5((x−0.4)2+(y−0.5)2+z2)}

Nx×Ny×Nz eMAX eMSQ eL2

8×8×8 2.0e-3 3.2e-4 1.6e-3
16×16×16 3.5e-5 6.3e-6 3.1e-5
32×32×32 6.2e-7 1.2e-7 6.1e-7
64×64×64 2.5e-8 2.9e-9 1.4e-8

We observe that in Examples 1, 2 the rate of convergence is O(h4) (the
error decays 16 times if the number of points in each direction is doubled).
This matches the theoretical results of [7], see also [5] for 3-D case.

5. SUMMARY AND DISCUSSION

The above algorithm for matching of two adjacent subdomains is a
part of a more general algorithm. Consider the case when the domain is
divided into some parallelepiped subdomains (see Fig. 4). We can set arbi-
trary values of solution u at the horizontal interfaces.
If u is assumed to vanish at the horizontal interfaces then its derivati-

ves in x and y vanish and therefore the second derivative in z can be
evaluated. Let us define f1, f2 as in 2-D case, these are functions of z which
vanish at the ends of the vertical edges, with the second derivatives
computed above. Using the above function, we can interpolate Dirichlet
values for u in the xz plane. Thus the compatible boundary conditions are
determined at the cylindrical envelope.
The boundary conditions at yz planes are defined as in Section 3.
As a summary the following remarks can be done.

1. The developed spectral algorithm for the Poisson equation achie-
ves high accuracy of 10−7–10−8 for 64×64×64 points in the sub-
domains. Based on [6], similar algorithm can be developed for
Helmholtz type 3-D equations.

2. The algorithm takes O(N3 logN) operations, where N is the
number of points in each direction. Similar to 2-D case, the hier-
archical matching procedure reduces the number of computations.

Fig. 4. At the initial step we define consistent boundary conditions at all the interfaces.
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3. The algorithm is expected to be applicable for parallel implemen-
tation as its previous 2-D version developed in [1].
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