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Introduction
The course will focus on modern and advanced methods in
scientific computing with applications to mathematics, computer
science and engineering. Lectures will be given on the following
topics:

Sparse Representations
Compressed Sensing
Fast Multi-pole method & Fast Gauss Transform
Matrix Perturbation
Matrix Completion
Patch-Tensor Embedding
Diffusion Maps
Local Diffusion Folders
Prolate Spheroidal Wave Functions
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Motivation
Manifold learning:The goal
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Motivation
Manifold learning:Diffusion maps
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Matrix Approximation and Completion

Matrix completion is a popular research field with many
applications to biology, machine learning, image processing
and other scientific fields.
In particular - Low Rank completions
Example: The Netflix problem for movie recommendations:

Rows correspond to viewers, columns to movies
Entry Xij ∈ {1, ...,5} is the rating
480,000 viewers ×18,000 movies⇒ 8.9× 109 entries

Each viewer recommends 200 movies on average, so only
1.2% of the entries contain data
The task is to predict the ratings that viewers will give to
movies they have not yet rated
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Matrix Approximation and Completion

Mathematically, the problem is:

minimize rank(X)
subject to Xij = Mij , (i , j) ∈ Ω

(1)

We are looking for a matrix with minimal rank, such that the
given entries do not change. The problem in Eq. 1 is NP-hard
Complete by minizing the rank:

M =

[
M1,1 M1,2

M2,1 ?

]
=

[
1 2
3 ?

]
.

The missing entry should be 6 and the rank will be 1. In this
case, the solution is unique.
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Matrix Approximation and Completion

In the course we will discuss some matrix completion related
topics:

Least squares approximation of matrices under different
spectral regularizations
Methods for approximating just some of the entries
Discuss convergence of different methods: local and global
convergence
Discuss today’s state of the art methods for matrix
completion and their drawbacks
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Fast Multi-pole Method

The FMM is a method developed to speed up computations on
n-body problem.

Developed by Greengard and Rokhlin in the late 80s
Considered by some one of the top ten most important
algorithms of the 20th century
Can be used to accelerate matrix-vector multiplication with
certain structure from O(n2) to O(n)

Can be used to accelerate iterative methods for solving
linear system of equations that perform matrix-vector
multiplication (for example, conjugate gradient method).
Also can be used for electromagnetic problems
Can be utilized for Fast Gauss Transform
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Prolate Spheroidal Wave Functions

Bandlimited functions are important in many fields of
mathematics and engineering.

PSWFs are the eigenfunctions of the bandlimited Fourier
transform: ∫ 1

−1
eic ω·x ψc

n(ω) dω = λc
n ψ

c
n(x)

c is a fixed bandlimit. x ∈ [−1,1], ω ∈ [−1,1]
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Prolate Spheroidal Wave Functions

The PSWFs developed in the 60s by David Slepian and are
used in the following fields:

Signal Processing: Filter design, signal reconstruction
Interpolation
Approximation

We will focus mainly on the properties of the PSWFs and their
application to approximation of bandlimited functions
(Shkolnisky & Tygert)
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Localized diffusion folders
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Diffusion Maps

‖x − y‖

e−
‖x−y‖

ε
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Patch to Tensor Embedding

How can we discriminate between two
similar data points that have dissimilar
neighborhood?
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Patch to Tensor Embedding

M⊆ Rm

M ⊆M ; |M| = nx , y ∈ Mω(x , y) ∈ R
e.g., ω(x , y) = exp

(
−‖x−y‖

ε

)

u ∈ M 7→ Ψ(u) ∈ R`�m

N(x),N(y) ⊆M ; x , y ∈ MTx (M) = span{o1
x , . . . ,od

x }
Ty (M) = span{o1

y , . . . ,od
y }

Gxy ∈ Rd×d ; Gxy = ω(x , y)Oxy

N(u ∈ M) 7→ Tu ∈ R` ⊗Rd
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Sparse Representations and the k-SVD
Algorithm

We will overview different methods finding compact
representations for matrices.That is, to present a matrix
using sparse, linear combination of a small dictionary.
Motivation : image compression, de-noising, image
completion - you name it!
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Sparse Representations and the k-SVD
Algorithm

In mathematical form : Given a matrix A, we would like the
find matrices D and α, such that A ≈ Dα where D a column
matrix of a small set of columns in A, and α is sparse.

Here, each column of α is a sparse linear combination of the
columns of D forming a column of A.
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Sparse Representations and the k-SVD
Algorithm

we will go over the k-SVD algorithm which find such
representation in an elegant way, using ideas from the
Signgular Value Decomposition, and k-Means algorithms.
Based on papers and lectures of Michael Elad.
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Matrix Perturbation Theory and Its
Applications

In a nutshell : how does a small change in the input affects
the output?
Given a matrix A and some function φ which operates on A,
we are interested in understanding how a perturbation
added to the matrix, affects φ.
That is to understand the relation between φ(A) and
φ(A + ε), where ε is a small perturbation (can be noise).
Interesting φ operators can be ones which finds the
eigenvalues of A, its eigenvectors, ‖A‖ and so on.
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Matrix Perturbation Theory and Its
Applications

Example application(1) : Computation of the Google page
rank algorithm - how to update the ranks without
recomputing the entire algorithm.
Example application(2) : updating a training set profile with
small changes to the input set.
Books

Matrix Analysis - R. Bhatia
Matrix Perturbation Theory - Stewart and Sun.
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