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Prologue

Our hero is the intrepid, yet sensitive matrix A.
Our villain is E, who keeps perturbing A.
When A is perturbed he puts on a crumpled hat: Ã = A + E .

G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory (1990)
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Introduction

In a nutshell : how does a small change in the input affects
the output?
Given a matrix A and some function φ which operates on A,
we are interested in understanding how a small
perturbation added to the matrix, affects the behavior of φ.
That is, to understand the relation between φ(A) and
φ(A + ε), where ε is a small perturbation (can be noise).
Interesting φ operators : finding the singular values of A, the
eigenvectors A, ‖A‖ and so on.
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Introduction

Example application(1) : Computation of the Google page
rank algorithm - how to update the ranks without
recomputing the entire algorithm.
Example application(2) : updating a training set profile with
small changes to the input set.
Books

Matrix Analysis - R. Bhatia.
Matrix Perturbation Theory - Stewart and Sun.
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Example Application - Google PageRank
Calculation I

Pagerank : The importance of a web page is set by the
number of important pages pointing to it.
r(P) =

∑
Q∈BP

r(Q)
|Q| where

BP=[all pages pointing to P], |Q| = [ links out of Q].
Random walk over the entire web (the probability to reach
it).
Can be calculated by iterating πT

j = πT
j−1P

Here P is a matrix with pij = 1
|Pi |

if Pi links to Pj (0 otherwise)

The pagerank vector will be πT = limj→∞ π
T
j . “The stationary

probability distribution vector”.
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Example Application - Google PageRank
Calculation II

How to change P to be stochastic and irreducible (no
looped chains)?
Change the transition probability matrix to be
P̃ = αP + (1− α) 1

neeT .
This should run on billions of pages (Takes Google days to
run it).
What if I added a new link to my homepage?
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Another Example - Face Recognition
Application
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Eigenpair Approximation

Using matrix perturbation theory to update the eigenpairs.
Can update the left principal eigenvector π of a stochastic
matrix P where π = πP (stationary distribution of a Markov
chain).
Such methods can accelerate algorithms like Pagerank and
HIT that use the stationary distribution values as rating
scores. 1 2

Suitable for updating the principle eigenvector of the
perturbed matrix. eigenvectors.

1Adaptive methods for the computation of PageRank. Kamvar,
Haveliwala and Golub, 2004.

2Updating Markov chains with an eye on Google’s PageRank.
Langville and Meyer, 2006.
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Eigenpair Approximation I

π1
...
πn


T

=

π1
...
πn


T p11 · · · p1n

...
...

pn1 · · · pnn


Power Iteration Method

iterates on φnext =
Aφ
‖Aφ‖

converges to the (dominant) eigenvector of the largest
eigenvalue

Adaptive Power Method uses the fact that most
coordinates of the eigenvector become stable within few
iterations, and we can compute only ones which have not
converged.
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Eigenpair Approximation II

Aggregated Power Iteration reduces the unchanged
states of the Markov chain into a single super state, and
creates a smaller matrix. This seed eigenvector is used as
the guess for each full power iteration.
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Updating A low Dimensional Representation

We start with a symmetric matrix A which is the affinity
matrix of the dataset.
That is, [A]ij is the similarity level between elements i and A
can be computed in various ways using different kernels
and distance metrics.
A low dimensional embedding for the dataset is computed
using the spectral decomposition of A.
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Updating A low Dimensional Representation
- Cont.

We are now given the perturbation matrix Ã of the matrix A.
We can assume that the perturbations are sufficiently small,
that is ‖Ã− A‖ < ε for some small ε.
We also assume that Ã is symmetric since we compute it in
the same way as A using the updated X̃ .
We wish to update the perturbed eigenpairs of Ã based on
A and its eigenpairs.
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Updating A low Dimensional Representation
- Cont.

Given a symmetric n × n matrix A with its k dominant
eigenvalues λ1 ≥ λ2 ≥ ... ≥ λk and eigenvectors
φ1, φ2, ..., φk , respectively, and a perturbed matrix Ã such
that ‖Ã− A‖ < ε, find the perturbed eigenvalues
λ̃1 ≥ λ̃2 ≥ ... ≥ λ̃k and its eigenvectors φ̃1, φ̃2, ..., φ̃k of Ã in
the most efficient way.
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Computing the Eigenpairs First Order
Approximation I

Compute the approximation of each eigenpair.
Given an eigenpair (φi , λi) of a symmetric matrix A where
Aφi = λiφi , we compute the first order approximation of the
eigenpair of the perturbed matrix Ã = A + ∆A.
We assume that the change ∆A is sufficiently small, which
result in a small perturbation in φi and λi .
We look for ∆λi and ∆φi that satisfy the equation

(A + ∆A)(φi + ∆φi) = (λi + ∆λi)(φi + ∆φi). (1)
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Eigenpair Approximation

Theorem
If (φi , λi) is an Eigenpair of A and Ã = A + ∆A then

λ̃i = λi + φT
i (Ã− A)φi + o(‖∆A‖2), (2)

φ̃i = φi +
∑
j 6=i

φT
j (Ã− A)φi

λi − λj
φj + o(‖∆A‖2). (3)
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The Recursive Power Iteration (RPI)
Algorithm
Overview

Power Iteration method has proved to be effective when
calculating the principle eigenvector of a matrix.
In the RPI algorithm the first order approximation of the
eigenpairs of A will be the initial guess for the power
iteration method.
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The Recursive Power Iteration (RPI)
Algorithm - Cont.
Overview

The first order approximation should be close to the actual
solution we seek and therefore requires fewer iteration
steps to converge.
Once the eigenvector φ̃i is obtained in step i , we transform
Ã into a matrix that has φ̃i+1 as its principle eigenvector. We
iterate this step until we recover the k dominant
eigenvectors of Ã.
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The Recursive Power Iteration (RPI)
Algorithm - Cont.

Algorithm 1: Recursive Power Iteration Algorithm

Input: Perturbed symmetric matrix Ãn×n, number of
eigenvectors to calculate k , initial eigenvectors guesses
{vi}k

i=1, admissible error err

Output: Approximated eigenvectors
{
φ̃i

}k

i=1
, approximated

eigenvalues
{
λ̃i

}k

i=1
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The Recursive Power Iteration (RPI)
Algorithm - Cont.

1: for i = 1→ k do
2: φ← vi

3: repeat
4: φnext ← Ãφ

‖Ãφ‖
5: errφ ← ‖φ− φnext‖
6: φ← φnext

7: until errφ ≤ err
8: φ̃i ← φ

9: λ̃i ←
φ̃T

i Ãφ̃i

φ̃T
i φ̃i

10: Ã← Ã− φ̃i λ̃i φ̃
T
i

11: end for
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Correctness of the RPI Algorithm

The correctness of the RPI algorithm is proved based on
the fact that the power iteration method converges, and on
the spectral decomposition properties of Ã.
In step i we find the i largest eigenpair using the power
method with the first order approximation as the initial
guess.
We then subtract the matrix φ̃i λ̃i φ̃

T
i from Ã. This step force

the next eigenpair to become the principal eigenpair which
will be found on the next step.
We use the fact that Ã is symmetric and has a spectral
decomposition of the form Ã =

∑n
i=1 φ̃i λ̃i φ̃

T
i , where φ̃i , λ̃i are

the eigenpairs of Ã.
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Matrix Factorization

Determine bounds for the change in the factors of a matrix when
the matrix is perturbed.

Theorem
Stuart, 1977 If A = QR and A + ∆A = (Q + ∆Q)(R + ∆R) are
the QR factorizations, then, for sufficiently small ∆A

‖∆R‖F

‖R‖F
≤ cκ(A)

‖∆A‖F

‖A‖F
, ‖∆Q‖F ≤ cκ(A)

‖∆A‖F

‖A‖F
(4)

where c is a small constant and κ(A) = ‖A‖‖A−1‖ is the
condition number of A.

Yaniv Shmueli (TAU) Matrix Perturbation Theory November 29, 2012 21 / 21


