Matrix Perturbation Theory and its Applications

Yaniv Shmueli

School of Computer Science
Tel-Aviv University
November 29, 2012

Prologue

Our hero is the intrepid, yet sensitive matrix A.
Our villain is E, who keeps perturbing A. When A is perturbed he puts on a crumpled hat: $\tilde{A}=A+E$.
G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory (1990)

Introduction

- In a nutshell : how does a small change in the input affects the output?
- Given a matrix A and some function ϕ which operates on A, we are interested in understanding how a small perturbation added to the matrix, affects the behavior of ϕ.
- That is, to understand the relation between $\phi(A)$ and $\phi(A+\epsilon)$, where ϵ is a small perturbation (can be noise).
- Interesting ϕ operators : finding the singular values of A, the eigenvectors $A,\|A\|$ and so on.

Introduction

- Example application(1) : Computation of the Google page rank algorithm - how to update the ranks without recomputing the entire algorithm.
- Example application(2) : updating a training set profile with small changes to the input set.
- Books
- Matrix Analysis - R. Bhatia.
- Matrix Perturbation Theory - Stewart and Sun.

Example Application - Google PageRank Calculation I

- Pagerank : The importance of a web page is set by the number of important pages pointing to it.
- $r(P)=\sum_{Q \in B_{P}} \frac{r(Q)}{|Q|}$ where $B_{P}=[$ all pages pointing to P$],|Q|=[$ links out of Q$]$.
- Random walk over the entire web (the probability to reach it).
- Can be calculated by iterating $\pi_{j}^{T}=\pi_{j-1}^{T} P$
- Here P is a matrix with $p_{i j}=\frac{1}{\left|P_{i}\right|}$ if P_{i} links to P_{j} (0 otherwise)
- The pagerank vector will be $\pi^{T}=\lim _{j \rightarrow \infty} \pi_{j}^{T}$. "The stationary probability distribution vector".

Example Application - Google PageRank Calculation II

- How to change P to be stochastic and irreducible (no looped chains)?
- Change the transition probability matrix to be $\tilde{P}=\alpha P+(1-\alpha) \frac{1}{n} e e^{T}$.
- This should run on billions of pages (Takes Google days to run it).
- What if I added a new link to my homepage?

Another Example - Face Recognition Application

Another Example - Face Recognition Application

 MOMR5ロ 오영․

Another Example - Face Recognition Application

 오영․

Another Example - Face Recognition Application

 오영․

Eigenpair Approximation

- Using matrix perturbation theory to update the eigenpairs.
- Can update the left principal eigenvector π of a stochastic matrix P where $\pi=\pi P$ (stationary distribution of a Markov chain).
- Such methods can accelerate algorithms like Pagerank and HIT that use the stationary distribution values as rating scores. ${ }^{12}$
- Suitable for updating the principle eigenvector of the perturbed matrix. eigenvectors.

[^0]
Eigenpair Approximation I

$$
\left(\begin{array}{c}
\pi_{1} \\
\vdots \\
\pi_{n}
\end{array}\right)^{T}=\left(\begin{array}{c}
\pi_{1} \\
\vdots \\
\pi_{n}
\end{array}\right)^{T}\left(\begin{array}{ccc}
p_{11} & \cdots & p_{1 n} \\
\vdots & & \vdots \\
p_{n 1} & \cdots & p_{n n}
\end{array}\right)
$$

- Power Iteration Method
- iterates on $\phi_{\text {next }}=\frac{A \phi}{\|A \phi\|}$
- converges to the (dominant) eigenvector of the largest eigenvalue
- Adaptive Power Method uses the fact that most coordinates of the eigenvector become stable within few iterations, and we can compute only ones which have not converged.

Eigenpair Approximation II

- Aggregated Power Iteration reduces the unchanged states of the Markov chain into a single super state, and creates a smaller matrix. This seed eigenvector is used as the guess for each full power iteration.

Updating A low Dimensional Representation

- We start with a symmetric matrix A which is the affinity matrix of the dataset.
- That is, $[A]_{j j}$ is the similarity level between elements i and A can be computed in various ways using different kernels and distance metrics.
- A low dimensional embedding for the dataset is computed using the spectral decomposition of A.

Updating A low Dimensional Representation - Cont.

- We are now given the perturbation matrix \tilde{A} of the matrix A.
- We can assume that the perturbations are sufficiently small, that is $\|\tilde{A}-A\|<\varepsilon$ for some small ε.
- We also assume that \tilde{A} is symmetric since we compute it in the same way as A using the updated \tilde{X}.
- We wish to update the perturbed eigenpairs of \tilde{A} based on A and its eigenpairs.

Updating A low Dimensional Representation - Cont.

- Given a symmetric $n \times n$ matrix A with its k dominant eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ and eigenvectors $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$, respectively, and a perturbed matrix \tilde{A} such that $\|\tilde{A}-A\|<\varepsilon$, find the perturbed eigenvalues $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{k}$ and its eigenvectors $\tilde{\phi}_{1}, \tilde{\phi}_{2}, \ldots, \tilde{\phi}_{k}$ of \tilde{A} in the most efficient way.

Computing the Eigenpairs First Order Approximation I

- Compute the approximation of each eigenpair.
- Given an eigenpair (ϕ_{i}, λ_{i}) of a symmetric matrix A where $\boldsymbol{A} \phi_{i}=\lambda_{i} \phi_{i}$, we compute the first order approximation of the eigenpair of the perturbed matrix $\tilde{A}=A+\Delta A$.
- We assume that the change ΔA is sufficiently small, which result in a small perturbation in ϕ_{i} and λ_{i}.
- We look for $\Delta \lambda_{i}$ and $\Delta \phi_{i}$ that satisfy the equation

$$
\begin{equation*}
(A+\Delta A)\left(\phi_{i}+\Delta \phi_{i}\right)=\left(\lambda_{i}+\Delta \lambda_{i}\right)\left(\phi_{i}+\Delta \phi_{i}\right) . \tag{1}
\end{equation*}
$$

Eigenpair Approximation

Theorem

If $\left(\phi_{i}, \lambda_{i}\right)$ is an Eigenpair of A and $\tilde{A}=A+\Delta A$ then

$$
\begin{gather*}
\tilde{\lambda}_{i}=\lambda_{i}+\phi_{i}^{\top}(\tilde{A}-A) \phi_{i}+o\left(\|\Delta A\|^{2}\right), \tag{2}\\
\tilde{\phi}_{i}=\phi_{i}+\sum_{j \neq i} \frac{\phi_{j}^{T}(\tilde{A}-A) \phi_{i}}{\lambda_{i}-\lambda_{j}} \phi_{j}+o\left(\|\Delta A\|^{2}\right) . \tag{3}
\end{gather*}
$$

The Recursive Power Iteration (RPI) Algorithm
 Overview

- Power Iteration method has proved to be effective when calculating the principle eigenvector of a matrix.
- In the RPI algorithm the first order approximation of the eigenpairs of A will be the initial guess for the power iteration method.

The Recursive Power Iteration (RPI) Algorithm - Cont.

- The first order approximation should be close to the actual solution we seek and therefore requires fewer iteration steps to converge.
- Once the eigenvector $\tilde{\phi}_{i}$ is obtained in step i, we transform \tilde{A} into a matrix that has $\tilde{\phi}_{i+1}$ as its principle eigenvector. We iterate this step until we recover the k dominant eigenvectors of \tilde{A}.

The Recursive Power Iteration (RPI) Algorithm - Cont.

Algorithm 1: Recursive Power Iteration Algorithm
Input: Perturbed symmetric matrix $\tilde{A}_{n \times n}$, number of eigenvectors to calculate k, initial eigenvectors guesses $\left\{v_{i}\right\}_{i=1}^{k}$, admissible error err
Output: Approximated eigenvectors $\left\{\tilde{\phi}_{i}\right\}_{i=1}^{k}$, approximated eigenvalues $\left\{\tilde{\lambda}_{i}\right\}_{i=1}^{k}$

The Recursive Power Iteration (RPI) Algorithm - Cont.

1: for $i=1 \rightarrow k$ do
2: $\phi \leftarrow v_{i}$
3: repeat
4: $\quad \phi_{\text {next }} \leftarrow \frac{\tilde{A} \phi}{\|\tilde{A} \phi\|}$
5: $\quad e r r_{\phi} \leftarrow\left\|\phi-\phi_{\text {next }}\right\|$
6: $\quad \phi \leftarrow \phi_{\text {next }}$
7: until err ${ }_{\phi} \leq e r r$
8: $\quad \tilde{\phi}_{i} \leftarrow \phi$
9: $\quad \tilde{\lambda}_{i} \leftarrow \frac{\tilde{\phi}_{i}^{T} \tilde{A}^{\tilde{\phi}_{i}}}{\tilde{\phi}_{i}^{T} \tilde{\phi}_{i}}$
10: $\quad \tilde{A} \leftarrow \tilde{A}-\tilde{\phi}_{i} \tilde{\lambda}_{i} \tilde{\phi}_{i}^{T}$
11: end for

Correctness of the RPI Algorithm

- The correctness of the RPI algorithm is proved based on the fact that the power iteration method converges, and on the spectral decomposition properties of \tilde{A}.
- In step i we find the i largest eigenpair using the power method with the first order approximation as the initial guess.
- We then subtract the matrix $\tilde{\phi}_{i} \tilde{\lambda}_{i} \tilde{\phi}_{i}^{T}$ from \tilde{A}. This step force the next eigenpair to become the principal eigenpair which will be found on the next step.
- We use the fact that \tilde{A} is symmetric and has a spectral decomposition of the form $\tilde{A}=\sum_{i=1}^{n} \tilde{\phi}_{i} \tilde{\lambda}_{i} \tilde{\phi}_{i}^{T}$, where $\tilde{\phi}_{i}, \tilde{\lambda}_{i}$ are the eigenpairs of \tilde{A}.

Matrix Factorization

Determine bounds for the change in the factors of a matrix when the matrix is perturbed.

Theorem

Stuart, 1977 If $A=Q R$ and $A+\Delta A=(Q+\Delta Q)(R+\Delta R)$ are the $Q R$ factorizations, then, for sufficiently small ΔA

$$
\begin{equation*}
\frac{\|\Delta R\|_{F}}{\|R\|_{F}} \leq c \kappa(A) \frac{\|\Delta A\|_{F}}{\|A\|_{F}},\|\Delta Q\|_{F} \leq c \kappa(A) \frac{\|\Delta A\|_{F}}{\|A\|_{F}} \tag{4}
\end{equation*}
$$

where c is a small constant and $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is the condition number of A.

[^0]: ${ }^{1}$ Adaptive methods for the computation of PageRank. Kamvar, Haveliwala and Golub, 2004.
 ${ }^{2}$ Updating Markov chains with an eye on Google's PageRank. Langville and Meyer, 2006.

