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Introduction

Matrix completion recently became a very popular research
topic
Has many applications in collaborative filtering, computer
vision and machine learning
The “Holy Grail” of matrix completion problems is the
Low-Rank completion, which is an NP-hard problem
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Agenda

In this lesson we will discuss:
Motivation for the matrix completion problem
Short review on required mathematical background (SVD,
Norms...)
Nuclear norm derivative
Projected gradient method
Approximation techniques and geometry
Approximation for completion
The SVT algorithm
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Matrix Approximation and Completion

Matrix completion is a popular research field with many
applications to biology, machine learning, image processing
and other scientific fields.
In particular - Low Rank completions
Example: The Netflix problem for movie recommendations:

Rows correspond to viewers, columns to movies
Entry Xij ∈ {1, ...,5} is the rating
480,000 viewers ×18,000 movies⇒ 8.9× 109 entries

Each viewer recommends 200 movies on average, so only
1.2% of the entries contain data
The task is to predict the ratings that viewers will give to
movies they have not yet rated
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Matrix Approximation and Completion

Mathematically, the problem is:

minimize rank(X)
subject to Xij = Mij , (i , j) ∈ Ω

(1)

We are looking for a matrix with minimal rank, such that the
given entries do not change. The problem in Eq. 7 is NP-hard
Complete by minizing the rank:

M =

[
M1,1 M1,2

M2,1 ?

]
=

[
1 2
3 ?

]
.

The missing entry should be 6 and the rank will be 1. In this
case, the solution is unique.
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Matrix Approximation and Completion

In the course we will discuss some matrix completion related
topics:

Least squares approximation of matrices under different
spectral regularizations
Methods for approximating just some of the entries
Discuss convergence of different methods: local and global
convergence
Discuss today’s state of the art methods for matrix
completion and their drawbacks
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Matrix Approximation and Completion

An example for matrix approximation method:

Original, FFT and Rank. The approximation by rank
successfully constructed the flower.
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Matrix Norms

Frobenius norm:

‖A‖2
F = trace(A∗A) =

∑
i,j

|aij |2 =
∑

i

σ2
i

Spectral norm (induced norm for p=2):

‖A‖2 =
sup‖Ax‖2

‖x‖2
= σ1

‖A‖2 is equal to the largest singular values of A
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Matrix Norms - More General
Ky-Fan norm norm:

‖A‖k =
k∑

i=1

σi

Schatten norm:

‖A‖p = (
n∑

i=1

σp
i )

1
p

Uses all the singular values.
A special case for p = 1, Nuclear norm:

‖A‖∗ =
n∑

i=1

σi

In general, it should be a gauge function of the singular
values.
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Why Low Rank?

It is very often occurs that data depends on a small number of
factors. This is typical for physical data or real life images.
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Approximation Theorems
The most famous approximation theorem is the Eckart-Young
theorem (1936). The theorem gives the best low rank
approximation of a given matrix of minimizing ‖X̃− X‖F (or
‖X̃− X‖2) s.t. rank(X̃) = k

Theorem (Eckart-Young)
The best (Frobenius norm) approximation to a matrix X by a
rank k matrix, is given by X̃ = US̃V∗ where
diag(S) = (s1, .., sk ,0, ..,0) and USV∗ is the SVD of X

The same applies to the spectral norm as well:

Theorem (Spectral norm minimization)
The best spectral norm approximation to a matrix X by a rank k
matrix, is given by X̃ = US̃V∗ where diag(S) = (s1, .., sk ,0, ..,0)
and USV∗ is the SVD of X
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Approximation Theorems
Approximation under Frobenius norm:

minimize ‖X−M‖F

subject to ‖X‖F ≤ λ.

The solution is given by: X = M
‖M‖F

min(‖M‖F, λ). The proof is
done by observing on M as if it were a point in an m × n
dimensional space. We are looking for the closest point on the
ball ‖X‖F ≤ λ Suppose we want to take only some of the entries
into account. That is:

minimize ‖PX− PM‖F

subject to ‖X‖F ≤ λ.

The proof is similar to the previous one but here we are looking
for a point X on the sphere that is the closest to a line whose
points X′ ∈ H satisfy PX′ = PM. By geometrical considerations,
this point is given by X = PM

‖PM‖F
λ.
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More approximation theorems

The Procustrates theorem:

minimize ‖X−M‖F

subject to X∗X = I.

Can be extended to:

minimize ‖X−M‖F

subject to X∗X = D2.

(D diagonal). Can be converted by using: X = YD, Y∗Y = I.
When D is unknown, an iterative solution exists - the constraints
is to have X∗X diagonal.
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Pinching Theorem

The “Pinching” theorem states that:

‖diag(A)‖ ≤ ‖A‖

For every norm, satisfying ‖UAV‖ = ‖A‖ for U,V orthogonal.
Hence, the theorem is applicable to all the matrix norm we
discussed so far (Frobenius, Schatten, Ky-Fan). We will see a
simpler prove, but more specific to the nuclear and spectral
norms using Jacobi rotations.
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Jacobi Rotations
Jacobi rotations are used to reduce a symmetric matrix
A ∈ Rn×n to a diagonal form using rotation matrices. The idea is
to reduce the norm of the off-diagonal entries of A by using the
rotation matrix Q. Q is an n × n matrix that is equal to the
identity matrix except for four entries, given by:

qkk = qll = cos θ
qkl = sin θ
qlk = − sin θ

(2)

B = QTAQ (3)
where θ is chosen to minimize the off-diagonal part of B that it is
given by:

τ
∆
= cot θ =

all − akk

2akl
, t ∆

= tan θ =
sign(τ)

|τ |+
√

1 + τ 2
. (4)
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Jacobi Rotations

Theorem (The main theorem)

Let A ∈ Rn×n be a symmetric matrix and let B = JTAJ be its
Jacobi rotation for the entries (k , l). Assume that akk ≥ all .
Then, bkk ≥ akk and bll ≤ all . More precisely, bkk = akk + δ and
bll = all − δ, (δ ≥ 0).
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Jacobi Rotations

Proof.
The proof uses the Jacobi roation. In each application of Jacobi
rotation matrix to A, the norm of the off-diagonal part is getting
smaller and the diagonal part changes as well. By simple
calculations, it is possible to find the following updated equations
for the new diagonal:

bkk = akk − takl

bll = all + takl .
(5)

The sign of t is equal to the sign of τ . The sign of τ depends on
the three entries akk ,akl ,all , as shown from the expression
τ = cot θ = all−akk

2akl
. We divide it into four cases:
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Jacobi Rotations

Proof.
1 akl > 0, all > akk : In this case, τ is positive and therefore t is

positive. bkk < akk and bll > all . The smallest entry akk

becomes even smaller and the largest entry all becomes
even larger;

2 akl > 0, all < akk : Here t is negative and according to the
update equations, akk is getting larger and all is getting
smaller (bkk > akk and bll < all);

3 akl < 0, all > akk : t is negative, akk is getting smaller and all

is getting larger (bll > all and bkk < akk );
4 akl < 0, all < akk : t is positive, all is getting smaller and akk

is getting larger (bll < all and bkk > akk ).

The conclusion from the application of the Jacobi rotation is that
the largest diagonal entry becomes even larger and the smallest
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Proving the Pinching theorem

Theorem (Pinching for the Schatten norm
(Symmetric))

Let A ∈ Rn×n be symmetric matrix. Then, ‖diag(A)‖p ≤ ‖A‖p.

Proof.
We apply the Jacobi rotation to A such that B = JTAJ while
operating on entry (k , l). Suppose akk ≥ all and δ ≥ 0. We
examine the expression
|bkk |p + |bll |p=|akk + δ|p + |all − δ|p ≥ |akk |p + |all |p. Each iteration
increases the lp norm of the diagonal until it reaches the
Schatten norm of A.
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Pinching theorem

Lemma (Extension to real matrices)

Let A ∈ Rn×n be a square matrix. Then, ‖diag(A)‖p ≤ ‖A‖p.

Proof.
From the triangle inequality ‖A + AT‖ ≤ ‖A‖+ ‖AT‖ = 2‖A‖.
Hence ‖A‖ ≥ 1

2‖A + AT‖. Since A + AT is symmetric, we use
Theorem 4 that yields
‖A‖ ≥ 1

2‖A + AT‖ ≥ 1
2‖diag(A + AT)‖ = ‖diag(A)‖.
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Pinching theorem

Lemma (Extension to complex matrices with real
diagonal)

Let A be a square matrix with real diagonal. Then,
‖diag(A)‖p ≤ ‖A‖p.

Proof.
The proof is similar to the proof of Lemma 5. From the triangle
inequality we get ‖A‖ ≥ 1

2‖A + conj(A)‖. By using Lemma 5 we
get 1

2‖A + conj(A)‖ ≥ 1
2‖diag(A + conj(A)‖ = ‖diag(A)‖. Here

we used the fact that diag(A) is real.
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Pinching theorem

Theorem (Extension to complex matrices)

Let A ∈ Cn×n be a square matrix,. Then, ‖diag(A)‖p ≤ ‖A‖p.

Proof.
Let U be a diagonal unitary (square) matrix whose elements are
uj = e−iθj where θj is the phase of ajj . Because of the structure
of U, diag(UA) is real. Since |uj | = 1 we get
‖diag(A)‖ = ‖diag(UA)‖. From Lemma 6 we get
‖diag(A)‖ = ‖diag(UA)‖ ≤ ‖UA‖ = ‖A‖.

Now that we have the Pinching theorem, we can use it to prove
matrix approximation theorems to nuclear and spectral norms.
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Approximation under spectral norm

Lemma (Minimization of the Frobenius norm under
the spectral norm constraint)
Assume the SVD of M is given by M = USV∗ where
S = diag(σ1, .., σn). Then, the matrix X, which minimizes
‖X−M‖F such that ‖X‖2 ≤ λ, is given by X = US̃V∗ where σ̃i are
the singular values of S̃ and σ̃i = min(σi , λ), i = 1, . . . k , k ≤ n.

Proof.
‖X−M‖F = ‖X− USV∗‖F = ‖U∗XV− S‖F . Since S is diagonal,
‖diag(U∗XV)− S‖F ≤ ‖U∗XV− S‖F . From P.T.
‖diag(U∗XV)‖2 ≤ ‖U∗XV‖2. Therefore, U∗XV has to be diagonal
and the best minimizer under the spectral norm constraint is
achieved by minimizing each element separately yielding
U∗XV = diag(min(σi , λ)), i = 1, . . . k , k ≤ n and X = US̃V∗.
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Approximation under nuclear norm

The same argument that states that U∗XV has to be diagonal
can also be applied when the constraint is given by the nuclear
norm. Define S̃ = U∗XV. We wish to minimize
‖S̃− S‖F =

∑
i (σ̃i − σi)

2 s.t.
‖X‖∗ = ‖S̃‖∗ =

∑
i |σ̃i | ≤ λ, i = 1, . . . k , k ≤ n. Note that σ̃i has to

be nonnegative otherwise it will increase the Frobenius norm but
will not change the nuclear norm. Hence, the problem can now
be formulated as:

minimize
∑

i (σ̃i − σi)
2

subject to
∑

i σ̃i ≤ λ
subject to σ̃i ≥ 0.

(6)

This is a standard convex optimization problem that can be
solved by methods such as semidefinite programming
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Approximation of certain entries

We have seen how to approximate full matrices, can we use
them to approximate only in certain entries?

minimize ‖PX− PM‖F

subject to f (X) ≤ 0

Where P is a projection operator that indicates the entries we
wish to approximate and zeros the others.
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Solving Iteratively

Suppose we try to reduce the error between an initial guess and
the matrix we try to approximate at the specific entries, by
applying the projected gradient method:

Xn+1 = D(Xn − µnP(Xn −M))

Where D is a new operator that returns the best approximation
for the full matrix. For example, if we are interested in the rank
approximation, then D will be applying the EY theorem.
It rises the following questions:

How to determine the step size µn ?
Does the algorithm converge?
Does it converges to the correct solution?
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Solving Iteratively

For simplicity, assume µn = 1 for every n. The error at the nth
iteration is defined by:

εn = ‖PXn − PM‖F

Does εn converge? Since the error is non-negative, it is
sufficient to show it is monotonically decreasing.

Theorem (Algorithm convergence)
The error εn is monotonically decreasing in each iteration, for
µn = 1. Hence, the algorithm converges

We will now proof the theorem.
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Solving Iteratively

Definitions:
P - Projection operator: PX ∆

= B⊗ X, Bi,j ∈ {0,1}
D - Best approximation operator: DX is the best
approximation of X

W - Entries correction operator: WX ∆
= (I − P)X +PM, has

the following properties:
PWX = PM;
(I − P)WX = (I − P)X;
X−WX = PX− PM.

T - For convenience: T X ∆
= DWX
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Solving Iteratively

Proof.
Let Q be the line of all matrices with zero error, and let T nX be
the point at the nth iteration. T nX is mapped toWT nX ∈ Q and
has zero error and then to T n+1X. T n+1X must be inside a ball
centered atWT nX and whose radius is ‖WT nX− T nX‖
otherwise T nX is a better low rank approximation toWT nX and
this contradicts the Eckart-Young Theorem.
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Matrix Approximations I

Mathematically, it is written as:

‖T n+1X−WT nX‖2 = ‖(I − P)T n+1X− (I − P)WT nX‖2+
‖PT n+1X− PWT nX‖2 ≤ ‖T nX−WT nX‖2

= ‖PT nX− PM‖2

(7)
where in Eq. 7 we used the third property ofW
and since (third property):
‖PT n+1X− PWT nX‖ = ‖PT n+1X− PM‖
we finally get:

‖PT n+1X− PM‖ ≤ ‖PT nX− PM‖ (8)
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Solving Iteratively
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Solving Iteratively

We showed that the algorithm converges for µn = 1 but is it
optimal? Optimal step size is done by applying the Armijo rule in
each iteration. In particular, it looks like that:

l [n] = argminj∈Z≥0
: f (Xn,j) ≤ f (Xn)− σtrace(∇f (Xn)T (Xn − Zn,j))

Zn,j = D(Xn − µ̃2−j∇f (Xn))
µn = µ̃2−l[n]

Where f (X ) = 1
2‖PX− PM‖2

F , µ̃ > 0 and σ ∈ (0,1) Therefore,
finding the optimal step size is has significant computational
cost, as it requires several applications of the D.
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Solving Iteratively

We now show that in this case, the optimal step size is given by
µn = 1.

Theorem (Optimal step size)
For the interest zone matrix approximation problem, the optimal
step size is universal and given by µ = 1

proof. Let Xn be a current point in the iterative process that
satisfies the constraint (i.e. n ≥ 1) and let Q be the geometric
region of all the matrices X which satisfies ‖PX− PM‖ = 0. The
geometric interpretation of an error for a given point X is the
horizontal distance between X and Q. Let Y = Xn − µP(Xn −M)
with 0 < µ < 1 and let Ỹ = Xn − P(Xn −M). Note that the
difference between Y and Ỹ is strictly on the P axis and that Y is
between
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Solving Iteratively

Xn and Q. D maps Y to DY which is the best approximation to Y
which satisfies the constraint. This point must be inside ball B1

centered at Y with radius ‖Y− Xn‖F . On the other hand, DỸ is in
ball B2, centered in Ỹ whose radius is ‖Ỹ− Xn‖F and is the best
approximation to Ỹ. Because DY satisfies the constraint then
DỸ must be inside a smaller ball, whose radius is ‖Ỹ−DY‖F .
Note that in ball B3 whose center is Y and its radius ‖Y−DY‖F ,
there are no points to satisfy the constraint, hence DỸ /∈ B3.
Along with the fact that the line connecting Y and Ỹ is parallel to
the P axis, we get that ‖PDỸ− PM‖F ≤ ‖PDY− PM‖F , which
means that in every iteration, choosing µ < 1 will lead to an
error greater (or equal) to the error achieved for choosing µ = 1.
This completes the proof showing µ = 1 is the best choice.
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Solving Iteratively
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Solving Iteratively

Does the algorithm converge to the global solution? A new
theorem for the convergence of the projected gradient states:

Theorem (Convergence to global solution)
If the projection is convex and orthogonal, then by applying the
optimal step size in each iteration, the algorithm will converge to
the optimal solution

In our case: D is a projection, it is convex (at least for the
norms), we use the optimal step size, but something is
missing... D is not orthogonal: D 6= D∗ However, this is overkill.
For some cases convergence to global solution is guarantee
and even if not, it finds the global solution with high probability.
The power of this method lies in its versatility.
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Using This Approach for Completion

Assuming we converge to the global solution, a simple and
robust algorithm can be created using binary search. The
minimum λ is 0 and the maximum is the norm of any matrix
satisfying the constraint. Then, binary search is applied to find
the matrix with the minimal value of λ that satisfies the
constraints.
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Example

Corrupted
Image vs Reconstructed Image using nuclear norm minimization
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Singular Value Thresholding

A recently popular algorithm is the Singular Value Thresholding
(SVT).

We are interested in the solving the low rank matrix
completion problem→ NP-hard
Instead, solve the easier nuclear norm minimization
problem
Given a matrix of rank r and size n × n to recover, then if
the number of samples m taken uniformly satisfies:

m ≥ Cn1.2r logn

Then the low rank matrix can be reconstructed with high
probability.
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Singular Value Thresholding

Of course, the samples must be in a way that reconstruction
is possible. For example, if no row or column is sampled, it
is impossible to reconstruct the true matrix, even if it is rank
1, no matter what algorithm is used.
However, the theorem is still important, since for low rank
matrices, O(n1.2) entries is needed to achieve
reconstruction with high probability, must less than O(n2).
Note that an n × n matrix of rank r depends on r(2n − r)
degrees of freedom
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Shrinkage Operator

Consider the SVD of X:

X = USV∗

The shrinkage operator, Dτ is defined by:

Dτ (X) = UDτ (S)V∗

Where DS = diag(σi − τ)+. In words, zeroing the singular
values bigger than τ .
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Singular Value Thresholding

Theorem
For each τ > 0 and Y ∈ Rn1×n2 the shrinkage operator obeys:

Dτ (Y) = argminX
1
2
‖X− Y‖2

F + τ‖X‖∗

Proof (Sketch) The proof is based on the fact that
1
2‖X− Y‖2

F + τ‖X‖∗ is strictly convex. Hence, it has a unique
minimum. Showing the minimum is given by Dτ is done using
the subdifferential ∂‖X‖∗
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Singular Value Thresholding

The idea is to minimize

1
2
‖X‖2

F + τ‖X‖∗

such that PX = PM
As τ →∞ we will get the solution we desire, of minimizing the
nuclear norm.
The iterations are:

Xk = Dτ (Yk−1)

Yk = Yk−1 + δkP(M− Xk )

Gil Shabat (Tel-Aviv University) Basis and Spectral Representations November 3, 2012 43 / 44



Singular Value Thresholding

A few notes:
The solution found by SVT is tend to have low rank. This is
an empirical result but the reason is simple: zeroing the
small singular values pushes the solution to have low rank
Sparsity - If P is mostly zeros, the iterations can use this
property to save storage (on the Y iterations)
It is possible not to compute the entire SVD, since only the
singular values bigger than τ are interesting. A good
strategy is to use Lanczos method. Because Y is sparse, it
can be applied to vectors rapidly.
Can be extended to minimize the nuclear norm under
different convex constraints.
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