T'ywn nav A"

Communication Networks
(0368-3030) / Fall 2013

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

rdt3.0 sender

rdt_send(data)

rdt_rev(rovpk) &&

\ sndpkt = make_pki(0, data, checksum) (corrupt(rcvpkt) ||

\ udt_send(sndpkt)

rdt rcﬂrcggkq start_timer

A (Y vaitior
call 01rom
rdt_rev(revpkt)

&& notcorrupt(rcvpkt)
&& iSACK(rcvpkt, 1)
stop_timer

timeout
udt_send(sndpkt) C

start_timer (_/

rdt_send(data)

iISACK(revpkt, 1)
A

timeout
udt_send(sndpkt)

rdt_rev(revpkt)
&8 notcorrupt(revpkt)
&& ISACK(rcvpkt,0)

stop_timer

Wait for
call 1 from,
above

rdt_rov(revpkt)
A

rdt r &&
(corrupt(rcvpk() I sndpkt = make_pkt(1, data, checksum)
iSACK(rcvpkt,0)) udt_send(sndpkt)

A — start_timer

rd+3.0 in action

sender receiver

SRkl ——0 _ revond
ACK send ACKD
(v ACKD /
send pid N‘-—*
ACK
(loss) XA)'—

Sﬁnd NLKI

fimeout okt -
send pill e 1€
s ¢ ae«ec dupliwb.

send
ICVACK]
send piid
oy pkio
send ACKO

(c) lost ACK

Transport Layer 3-3

sender receiver
send pki0 -*—‘_‘_h* oV D0
A send ACKD

rev ACKD
send pkil
e pktl
send ACK1
fimeout
resend pkfl
oV
TevACK] (detect dupicate]
send pkil send ACK]
1oy pkio
send ACKQ

(d) premature fimeout

Transport Layer 35

Reliable Data Transfer
Kurose & Ross, Chapter 3.4 (5t ed.)

Many slides adapted from:

J. Kurose & K. Ross \

Computer Networking: A Top Down Approach (5% ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

rdt3.0 in action

sender receiver
sender receiver .
Skt - send pkt0 250

: kiQ

send pki0 d v pl

= "\-—.,__.* rC;"FdD(I\%KO A send ACKO
ACE rev ACKD /

cv ACKO send pkil
Serd pil i, ° \\m (loss)

\
ACK v pktl
C o 1
evACK] / sond ACK ' ;
{ ¢ imeo o
e AC - rev pki0 tesend pktl "\‘k‘:hl_‘ oV gkt
ot send ACKO ACK oG ACKT
CVACK]
send pki0
(@) operation with no loss fev pk0
send ACKD
b) lost packet

Transport Layer 3-4

Exercise (Kurose & Ross, 5t ed.)

« rdt 3.0 is correct only under a
FIFO channel assumption.
Correct = guarantees reliable
transmission. Data sent by
sender is exactly the data
reconstructed in the receiver
side.
Show a case where a non-FIFO
channel (i.e., one that can
cause packet reordering)
causes rdt 3.0 to deliver
incorrect data.

old version of MO
accepted!

T'ywn nav A"

Tsgort Layer

Exercise (Kurose & Ross, 5t ed.)

« The sender of rdt 3.0 simply ignores all received
packets that are either in error or have the wrong
value in the acknum field of an ack packet.

« Suppose that in such circumstances, rdt 3.0 were
simply to transmit the current data packet.

* Would the protocol still work?

* Would it be more or less efficient than before?

Exercise (Kurose & Ross, 5t ed.)

* Would it be more or less efficient than before?
= Depends on the length of the sender timeout,
compared to the expected channel delay.
= If the timeout is very long, then the immediate
retransmit can save us the long wait until the timeout
expires.
= However, premature timeouts can cause a pathologies.

MO
premature {

timeout

MO A0

Exercise (Kurose & Ross, 5t ed.)

» Would the protocol still work?

s Yes. A retransmissionis exactly what would happen if
the sender’s timeout expired (for instance, because an
ack was completely lost instead of garbled).

= The receiver can’t even distinguish between the two
events.

Exercise (Kurose & Ross, 5t ed.)

» Would it be more or less efficient than before?

» We will show a scenario in which one premature
timeout causes duplication of all the packets in the
session from a certain time point.

« This is the “Sorcerer’s Apprentice Syndrome”

Performance of rd+3.0

+ rdt3.0 works, but performance stinks
« ex: 1 6bps link, 15 ms prop. delay, 8000 bit packet:
L _ 8000bits

Qirans = E = 1097[)’)5 =8microseconds

= U qndert Utilization - fraction of fime sender busy sending

v - L/R 008 _ 00027
sender RTT+L/R 30008

if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link

network protocol limits use of physical resources!

Transport Layer 3-12

last packet bit transmitted, t = L/ R

first packet bit transmitted, t = 0 —fss------------------oo-ooo-

T'ywn nav A"

rdt3.0: stop-and-wait operation

sender receiver
first packet bit transmitted, t = 0—f-----------------=----oeeee

first packet bit arrives
t—last packet bit arrives, send ACK

ACK arrives, send ne:
packet, t = RTT+L/R

=—L/R 08 50007

U = =
sender prT.L /R 30.008

Transport Layer 3-13

Pipelining: increased utilization

sender receiver

last bit transmitted, t =L/ R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2™ packet arrives, send ACK
—last bit of 3 packet arrives, send ACK
ACK arrives, send ne;
packet, t=RTT+L/R

] Increase utilization
- /by a factor of 3!
*x
__3*L/R _ 024 _ o008

U = = =
sender RTT+L/R 30.008

Transport Layer 3-15

Go-Back-N

Sender:
« k-bit seq # in pkt header
« “window" of up to N, consecutive unack'ed pkts allowed

senhd_base nextseqgnum
ack'ed yet sent

I NI T i
window size —%
N

« ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
= may receive duplicate ACKs (see receiver)

« timer for each in-flight pkt

« timeout(n): retransmit pkt n and all higher seq # pkts in window

already I usable, not

Transport Layer 3-17

Pipelined protocols

pipelining: sender allows multiple, “in-flight", yet-to-

be-acknowledged pkts

* range of sequence numbers must be increased
= buffering at sender and/or receiver

ta} & step-and-wait protocal in oparafien

(B) @ pipsined protocol in operation

+ two generic forms of pipelined protocols: go-Back-N,

selective repeat

Transport Layer 3-14

Pipelined Protocols

Go-back-N: big picture:

Selective Repeat: big pic

+ sender can have up to
N unacked packets in
pipeline

« rcvr only sends
cumulative acks

= doesn't ack packet if
there's a gap

+ sender has timer for
oldest unacked packet

= if timer expires,
refransmit all unack'ed
packets

+ sender can have up to
N unack'ed packets in
pipeline

« rcvr sends /ndividual
ack for each packet

+ sender maintains timer
for each unacked
packet

= when timer expires,

retransmit only
unack'ed packet

Transport Layer 3-16

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {

= make_pkt(1 data,chksum)

udt_send(sndpktfnextseqnuml)
if (base == nextseqnum)

start_timer
nextseqnum++
}
A else
Fvry refuse_data(data)
nextseqnum=1
» timeout
start_timer
udt_send(sndpktfbasel)
rdt_rev(revpkt) O udt_send(sndpkibase+1])
&& corrupt(revpkt) .
—_— udt_send(sndpktfnextsegnum-1])

rdt_rev(rovpkt) &&
notcorrupt(rcvpk))

base =

tacknum(revpki)+1

If (base == nextseqnum)

start_timer

Transport Layer 3-18

T'ywn nav A"

GBN: receiver extended FSM

default
udt_send(sndpk) 4t rov(rovple)
&& notcurrupt(rcvpkt)

A T==ell &
S = -

expectedseqnum=1 lextract(rcvpkt, data)
sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pki(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
= may generate duplicate ACKs
= need only remember expectedseqnum
« out-of-order pkt:
= discard (don't buffer) -> no receiver buffering!
= Re-ACK pkt with highest in-order seq #

Transport Layer 3-19

Selective Repeat

« receiver /ndividually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

« sender only resends pkts for which ACK not
received
= sender fimer for each unACKed pkt
« sender window
= N consecutive seq #'s
= again limits seq #s of sent, unACK'ed pkts

Transport Layer 3-21

Selective repeat

—sender——— —receiver
data from above : pkt nin [revbase, revbasesN-1]
« if next available seq # in « send ACK(n)

window, send pkt % out-of-order: buffer
timeout(n): + in-order: deliver (also

deliver buffered, in-order
pkts), advance window fo
next not-yet-received pkt

PkT nin [rcvbase-N revbase-1]

« resend pkt n, restart timer
ACK(n) in [sendbase sendbase+N]:
« mark pkt n as received

« if nsmallest unACKed pkt,

advance window base fo * ACK(“A)
next unACKed seq # otherwise:
= ignore

. sender receiver
GBN in — —
-_— send pki0 \\
rev pkio
M send pktl sené)ACKO
rcv pkil
send pki2 —_ (0ss send ACK]
send pktd
(waif) rev pki3, discard
/ send ACK]
rcv ACKO
send pkt4
rcv pkid, discard
o ;gkjg — Send ACK!
ki, cf d
pkt2 timeout / rscé\%g ACK]IECGr
send pki2 \
send pkf3 rev pkit2, deliver
send pkt4

send ACKZ
send pkts rcv pkit3, deliver
\ send ACK3

Transport Layer 3-20

Selective repeat: sender, receiver windows

Transport Layer 3-23

send_base nexfsegnum

dlready usable, not
X ack'ed yet sent
sent, not
0000 NN D DURIDONONND | semiatas [roresce
t— window size—*%
N

(a) sender view of sequence numbers

out of order acceptable
(buffered) but I (within window)
dlready ack’ed

J00DO0ENETIENIERDETIOND opestesamer oo

}— window size —4
N

rev_base
(b) receiver view of sequence numbers

Transport Layer 3-22

Selective repeat in action

pkt0 sent

Bazsese 700 00 sevd dsliversd, AcCKD sent

o1 6789

pktl delivered. ACK1 sent

cif2saslersa

pkt2 sent
Aas6 789 X

ol ent, window full

[frzaaseres

pkt3 rovd, buffered, ACK3 sent
2 5

ACKD rcvd, pktd sent
oft234ssras

ACKL

cilzsaserse

pkt2 TIMEOUT. pkt2 resent

o ilzaaserss

pktd rovd, buffered. ACK4 sent

pktS rcvd, buffersd, ACKS sent

cilzsaserss

Pkt2 rovd, pkt2.pkt3,pktd.pkts
delivered, ACK2 sent

t12345p7s0]

ACK3 rovd, nothing sent

[BEERE R

sport Layer 3-24

T'ywn nav A"

sendar window

Selective repeat: e
dilemma

receiver window

(after receipt)

Example:
« seq#s:0,1,2,3 Feansmit pkig. o

+ window size=3 Ergzo1 £ ——p receive pachet

with seq number 0

receiver sees ho

difference in two)
scenarios! 3

receiver window
(after receipt)

incorrectly passes
duplicate data as new

in (a)

receive pachet
with seq number 0

Q: what relationship
between seq # size
and window size? ®)

Transport Layer 3-25

Minimal sequence range (cont.)

« In non-FIFO channel, this cannot be guaranteed!
= We assume that in realistic channels, old packets are
cleared from the network after a reasonable time, so
accidental overlap does not occur of the range of
sequence numbersis “big enough”.

Exercise (Kurose & Ross, 5t ed.)

« Are the following statementstrue or false?

rdt 3.0 is the same as SR with a sender and receiver

window size of 1.

rdt 3.0 is the same as GBN with a sender and receiver

window size of 1.

Both are true. With a window size of 1, SR, GBN, and the

rtd 3.0 are functionally equivalent.

= The window size of 1 precludes the possibility of out-of-
order packets (within the window).

= A cumulative ACK is just an ordinary ACK in this situation,

since it can only refer to the single packet within the
window.

Tonsport tayer

Minimal sequence range

» Assume we want to use a sender window of size N.

» What is the minimal number of unique sequence
numbers we should allow to prevent such errors?

« The cyclic sequence number should never cause the
sender and receiver’s window to ambiguously
overlap

¢ In FIFO channels:
= GBN: N + 1
= SR: 2N
s Proof: on-board

Exercise (Kurose & Ross, 5t ed.)

« Are the following statements true or false?

« With SR, it is possible for the sender to receive an ACK for a packet that
falls outside of its current window.

True. Suppose sender has a window size of 3.

Time ty: it sends packets 1, 2, 3.

Time ty > ty: receiveracks 1, 2, 3.

Time t, > ty: sender times out and retransmits 1, 2, 3.

Time t3 > t,: receiver gets the duplicates and reacks 1, 2, 3.

Time t, > t3: sender gets the ack sentat t;, advancesits windowto 4, 5, 6.

Time ts > t4: sender receives the acks sentat t,, that fall outside of its current

window.

With GBN, it is possible for the sender to receive an ACK for a packet that

falls outside of its current window.

True, with the same scenario as described above. Only need to replace the

selective acks with cumulative acks.

Exercise

Recall the GBN receiver: assume it is waiting for packet m (i.e., it received

correctly all the packets up to m — 1 inclusive).

= When a data packet with sequence n = m is received, the receiver accepts it
and advances its window.

= Whenever a data packet with sequence n # m is received, the receiver
discardsit and resends ack m (“I am still waiting for m”).

Assume a FIFO channel and an infinite sequence number. Does the

protocol remain correct if we perform the following changes?

If n < m the receiver discards the packet and does not send an ack.

Otherwise, operate as before.

Incorrect. Let the sender send packets 1, ...,m — 1. All received correctly,

but all acks are lost.

= The receiver waits for packet m.

= But wheneverthe sender times-outexpires, it resends packets 1, ..., m — 1.

= Receiver discardsthem and does not ack.

= Deadlock.

T'ywn nav A"

Exercise

e ifn > m, the receiver discards the packet and does
not send an ack. Otherwise, operate as before.

« Correct. If n > m was received, but the receiver is
waiting for m, it means we have a gap. The sender
will eventually timeout for m, and resend packet n
then.

