Communication Networks
(0368-3030) / Fall 2013

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Reliable Data Transfer
Kurose & Ross, Chapter 3.4 (5% ed.)

Many slides adapted from:

J. Kurose & K. Ross \

Computer Networking: A Top Down Approach (5t ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||

rdt_rcv(rcvpkt)

call Ofrom

\ start_timer

\ udt send(sndpkt) iISACK(rcvpkt,1))
A
—
timeout
udt_send(sndpkt)
start_timer

above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-3

rdt3.0 in action

sender receiver sender receiver
ok g
send pki0 e send pki0 v 0
> rcv pkio
M ACK send ACKO

send ACKO
y rcv ACKO
rcv ACKO send pkt1] kT]
send pki] \K (loss)
rcv pkil
ACK] y send ACKI
[CV.
send pki0 kt fimeout | kt
Q resend pki1 24
ACK v pkil \ oV pkt
send ACKO ACK send ACK

rcvACK] o
send pki0

d) operation with no loss rcv pki0
(@) op }G/ send ACKO

(b) lost packet

Transport Layer 3-4

rdt3.0 in action

sender receiver sender receiver
ok kt
send piio &’ rcv pki0 send pki0 \k} rcv pkio
ACK send ACKO ACK send ACKO
rcv ACKO _ rcv ACKO _
send pkt1 Pk send pkil
rcv pktl rCcv kil
ACK send ACK1 send ACK1
(loss) Xl)/
timeout
fimeout = ok resend pkil -
resend pktl \rcv okt 1 rcv pktl
ACK (detect duplicate) rcvACK (detect duplicate)
ACK] send ACKI] send pkio send ACK1
0 send ACKO
ACK Ve ACK
send ACKO
(c) lost ACK (d) premature timeout

Transport Layer 3-5

Exercise (Kurose & Ross, 5t ed.)

» rdt 3.0 is correct only under a MO
FIFO channel assumption.

= Correct = guarantees reliable Al
transmission. Data sent by A
sender is exactly the data M1
reconstructed in the receiver »»
side. _<
10

« Show a case where a non-FIFO

channel (i.e., one that can 10
cause packet reordering) A0 old version of M0
causes rdt 3.0 to deliver accepted!

incorrect data. {1

rrrrrrrrrrrrrr

Exercise (Kurose & Ross, 5t ed.)

* The sender of rdt 3.0 simply ignores all received
packets that are either in error or have the wrong
value in the acknum field of an ack packet.

» Suppose that in such circumstances, rdt 3.0 were

simp
 Wou
 Wou

y to transmit the current data packet.
d the protocol still work?
d it be more or less efficient than before?

Exercise (Kurose & Ross, 51" ed.)

* Would the protocol still work?

= Yes. A retransmission is exactly what would happen if
the sender’s timeout expired (for instance, because an
ack was completely lost instead of garbled).

= The receiver can’t even distinguish between the two
events.

Exercise (Kurose & Ross, 51" ed.)

« Would it be more or less efficient than before?

= Depends on the length of the sender timeout,
compared to the expected channel delay.

o |If the timeout is very long, then the immediate
retransmit can save us the long wait until the timeout
expires.

= However, premature timeouts can cause a pathologies.

Exercise (Kurose & Ross, 51" ed.)

« Would it be more or less efficient than before?

* We will show a scenario in which one premature
timeout causes duplication of all the packets in the
session from a certain time point.

e This is the “Sorcerer’s Apprentice Syndrome”

Performance of rdt3.0

% rdt3.0 works, but performance stinks
% ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
— = = 8microseconds

trans ~ o 10°bps

* U g Utilization - fraction of time sender busy sending

U _ L/R _ 008
sender pTT . L/R 30.008

= if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link

= network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-12

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = OJ
last packet bit transmitted, t = L/ R ¢

— first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet,t =RTT+L/R

U = L/R = 008 = 0.00027

sender RTT+L/R 30.008

Transport Layer 3-13

Pipelined protocols

pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
= range of sequence numbers must be increased
= buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

+ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-14

Pipelining: increased utilization

sender

first packet bit transmitted, t = 0
last bit transmitted, t =L / ,

RTT

ACK arrives, send next,|
packet, t=RTT +L/R |

U

sender

receiver

first packet bit arrives

last packet bit arrives, send ACK

_ > last bit of 2 packet arrives, send ACK
last bit of 3 packet arrives, send ACK

Increase utilization
/ by a factor of 3!

0.0008

Transport Layer 3-15

Pipelined Protocols

Go-back-N: big picture:
<+ sender can have up to
N unacked packets in
pipeline
% rcvr only sends
cumulative acks
= doesn't ack packet if
there's a gap
+ sender has timer for
oldest unacked packet
= if tfimer expires,

retransmit all unack'ed
packets

Selective Repeat: big pic

<+ sender can have up to
N unack’ed packets in
pipeline

% rcvr sends /ndividual
ack for each packet

< sender maintains timer
for each unacked
packet

= when timer expires,
retransmit only
unack'ed packet

Transport Layer 3-16

Go-Back-N

Sender:
» k-bit seq # in pkt header
» “window" of up to N, consecutive unack'ed pkts allowed

send_base nhexfsegnum dlready Usable. nof
i i ack’ed yet sent
LD CHTITE0O00I0 | et [rores
t _ window size —*%
N

» ACK(n): ACKs all pkts up 1o, including seq # n - "cumulative ACK"
= may receive duplicate ACKs (see receiver)

» timer for each in-flight pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-17

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqnumy)
if (base == nextsegqnum)

start_timer
nextsegnum-++
A else
— ., refuse_data(data
base=1 — ()
nextseqgnum=1 -

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

‘ ‘ ‘ timeout
start_timer
udt_send(sndpkt[base])
o Q udt_send(sndpki[base+1])

udt_send(sndpkt[nextseqnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer
- Transport Layer 3-18

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(rcvpkt)
- () && notcurrupt(rcvpkt)

A T~ - && hasseqgnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 ‘:Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedsegnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
= may generate duplicate ACKs
= need only remember expectedseqnum
% out-of-order pkt:
= discard (don't buffer) -> no receiver buffering
= Re-ACK pkt with highest in-order seq #

Transport Layer 3-19

GBN in

action

sender

send pktO
send pkf

¥ send pki?2

send pkT3
(wdalif)

rcv ACKO
send pkt4

rcv ACK]

—pktZ timeout
send pki2
send pkt3
send pkt4
send pktd

receiver

\
\(Ea(ss)

A\

send pkts \

—
~

rcv pkto
send ACKO

rcv pkil
send ACK

rcv pkt3, discard
send ACK

rcv pktd, discard
send ACK

rcv pktd, discard
sencpj) ACK]

rcv pki2, deliver

send ACK?2
rcv pkt3, deliver

send ACK3

Transport Layer 3-20

Selective Repeat

% receiver /ndividually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received
= sender timer for each unACKed pkt

+ sender window
= N consecutive seq #'s
= again limits seq #s of sent, unACK'ed pkts

Transport Layer 3-21

Selective repeat: sender, receiver windows

send_base hextsegnum dlready Lsable. not
, ack’'ed yet sent
(000 RTOLTIRECEET =t e
t __ window size —4
N

(a) sender view of sequence numbers

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂIIHIIIIIIIIIIIIIIII |ogecregaet [o

t _ window size—#4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-22

Selective repeat

—sender — receiver
data from above : ka N 1IN [rcvbase, rcvbase+N-1]
- if next available seq # in + send ACK(n)
window, send pkft % out-of-order: buffer
timeout(n): » in-order: deliver (also
+ resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
next not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]

AC K(H) In [sendbase,sendbase+N]:
» mark pkt n as received
» if n smallest unACKed pkt,

advance window base to ® ACK(n.)
next unACKed seq # otherwise:
» ighore

Transport Layer 3-23

Selective repeat in action

pktl =ent

pktl =ent

pkt:? =ent

01234567879 ﬂq__kﬁﬂ—__h%ﬁﬁ__“““'-pktD rovd, deliwvered., ACKD =ent

ofr 2 3 4|56 7 5 9

012 3456 7819

pktl rocwd, delivered. ACKl =ent
o 1l|j2 2456 7 819

012 3456 789 W

(loss)
pkt3 =ent. window full
0123456783 pktd rovd., buffered. ACKI sent
0D 1|2 3 4 5(e 7 89
ACKD rowd, pktd =e=nt
nj1 2 3 4|56 7 8 9
pktd rcwd, buffered. ACK4 =ent
ACK]l rowd, pkth ==nt D12 3 45l 7 819
012 34 5/ 7 89
pktt rovd, buffered. ACKS =ent
n1|2 3 4 5|6 7 8 9
—— pkt2 TIMEOUT, pkt2 resent
012 34 5/ 7 89
pkt? rowd, pkt?. pkt3d, pltd plth
delivered, ACK? =e=nt
ACK3 rowd, nothing sent 012345k 7879

01j2 3456 789

sport Layer 3-24

Selective repeat:

sender window receiver window
(after receipt) (after receipt)

dilemma

Example:
+» seq#s:0,1,2,3
< window size=3

< receiver sees no
difference in two
scenariosl!

% incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

pktO

012|301 2

Ofl 2 3J0 1 2

0121301 0112 30]1 2

0123012 01 2130 112

timeout
retransmit pktQ

0123015)“O

—p receive packet

with seq number O

(a)

receiver window
(after receipt)

sender window
(after receipt)

ktO
01230149

Ofl 2 3J0 1 2

012|301

01123 0]1 2

012|301 2

12430 1}2

Ofl1 2 3|01

012 301

receive packet
with seq number O

(0)

Transport Layer 3-25

Minimal sequence range

 Assume we want to use a sender window of size N.

* What is the minimal number of unique sequence
numbers we should allow to prevent such errors?

* The cyclic sequence number should never cause the
sender and receiver’s window to ambiguously
overlap

* In FIFO channels:
= GBN: N + 1
= SR: 2N
= Proof: on-board

Minimal sequence range (cont.)

* In non-FIFO channel, this cannot be guaranteed!

= We assume that in realistic channels, old packets are
cleared from the network after a reasonable time, so
accidental overlap does not occur of the range of
sequence numbers is “big enough”.

Exercise (Kurose & Ross, 5t ed.)

* Are the following statements true or false?

» With SR, it is possible for the sender to receive an ACK for a packet that
falls outside of its current window.
e True. Suppose sender has a window size of 3.
= Time t,: it sends packets 1, 2, 3.
= Time t; > ty: receiver acks 1, 2, 3.
= Time t, > tq: sender times out and retransmits 1, 2, 3.
= Time t3 > t,: receiver gets the duplicates and reacks 1, 2, 3.
= Time t, > t3: sender gets the ack sent at t;, advances its window to 4, 5, 6.
= Time tg > t4: sender receives the acks sent at t,, that fall outside of its current
window.
« With GBN, it is possible for the sender to receive an ACK for a packet that
falls outside of its current window.

e True, with the same scenario as described above. Only need to replace the
selective acks with cumulative acks.

Exercise (Kurose & Ross, 5t ed.)

* Are the following statements true or false?

e rdt 3.0 is the same as SR with a sender and receiver
window size of 1.

e rdt 3.0 is the same as GBN with a sender and receiver
window size of 1.

e Both are true. With a window size of 1, SR, GBN, and the
rtd 3.0 are functionally equivalent.

= The window size of 1 precludes the possibility of out-of-
order packets (within the window).

= A cumulative ACK is just an ordinary ACK in this situation,
since it can only refer to the single packet within the
window.

Exercise

Recall the GBN receiver: assume it is waiting for packet m (i.e., it received
correctly all the packets up to m — 1 inclusive).

= When a data packet with sequence n = m is received, the receiver accepts it
and advances its window.

= Whenever a data packet with sequence n # m is received, the receiver
discards it and resends ack m (“l am still waiting for m”).

» Assume a FIFO channel and an infinite sequence number. Does the
protocol remain correct if we perform the following changes?

» If n < m the receiver discards the packet and does not send an ack.
Otherwise, operate as before.

e Incorrect. Let the sender send packets 1, ..., m — 1. All received correctly,
but all acks are lost.
o The receiver waits for packet m.
= But whenever the sender times-out expires, it resends packets 1, ..., m — 1.
o Receiver discards them and does not ack.
= Deadlock.

Exercise

* ifn > m, the receiver discards the packet and does
not send an ack. Otherwise, operate as before.

e Correct. If n > m was received, but the receiver is
waiting for m, it means we have a gap. The sender
will eventually timeout for m, and resend packet n

then.

