Communication Networks (0368-3030) / Fall 2013

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Error Detection and Correction

Kurose & Ross, Chapter 5.2 (5th ed.)

Error Detection

EDC= Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - · larger EDC field yields better detection and correction

Example – Parity bit

- Assume D has d bits.
- The EDC is one bit s.t. the number of 1's in the d+1 bits (D and the EDC) is even.
- Receiver can detect an error inverting an odd number of bits
- Example:
 - D = 11101
 - Sender sends 111010
 - Receiver gets 101010
 - Illegal parity an error has occurred
 - Receiver cannot correct the error

Error detection vs. Error correction

Some theory

- Assume all messages are of size d
 - We have 2^d possible messages, all of them valid
 - When some bits flip, the receiver still gets a valid message
 - It cannot know there was an error
- The proposed solution:
 - Add r bits of redundancy .
 - Now, we have 2^{d+r} possible messages, but only 2^d of them are valid (these are called *codewords*).
 - "Small errors" are likely to transform the valid message into an invalid one, so that the receiver knows an error has occurred.

Some theory (cont.)

- <u>Definition</u>: The Hamming-distance of two strings x and y is the number of bits in which they differ, denoted dH(x,y).
 - For instance: x = 110010 y = 111000. dH(x,y) = 2
- <u>Definition:</u> The Hamming-distance of an errorcorrection scheme (= code) is the minimal Hamming-distance between two valid messages (= codewords).

```
dH(C) = min \{ dH(x,y) : x, y \in C \}
```

Parity bit revisited

- Assume all messages have d bits.
- The valid messages (= codewords) are all the d+1 messages s.t their total number of 1's is even.
- The Hamming-distance of this scheme is 2.
 - No two valid codewords x,y s.t. dH(x,y) = 1
 - If dH(x,y) = 1 then either x or y has an odd number of 1's.
 - There are two valid codewords with distance 2:
 - For instance, for d = 6 $x = 111100 \text{ y} = 111111 \rightarrow dH(x,y) = 2$

Why is Hamming-distance important?

- Theorem 1: If a code C has dH(C) = k+1, then it can detect all errors of k bits or less.
 - Such errors necessarily produce an invalid codeword
- Theorem 2: If a code C has dH(C) = 2k+1, then it can correct all errors of k bits or less.
 - Think why
- And indeed: parity bit can detect all single-bit errors, but cannot correct any.

CRC – Cyclic Redundancy Check

- Bits represent polynomials over GF(2)
 - Example: $100101 = x^5 + x^2 + 1$
 - Addition and subtraction are actually XOR (no carry)
 - Example: 1101 + 0111 = 1010 $(x^3 + x^2 + 1) + (x^2 + x + 1) = x^3 + x$
- Sender & receiver agree in advance on a generating polynomial G of degree r
- When sender wish to send D, it calculates R s.t. DR is divisible by G.
- When the receiver gets D'R' it divides it by G. If the remainder is not 0 an error has occurred.

Calculating R

- DR = $x^r \cdot D + R$
- We want: $DR = x^r \cdot D + R = n \cdot G$
 - But addition and subtraction are just XOR they are interchangeable
- Equivalently, then, we want: $x^r \cdot D = n \cdot G + R$
- Namely, R is the remainder of x^r · D divided by G!
- Observation: R's degree is at most r-1.
 - It is the remainder of dividing by G, and deg(G) = r

CRC Example

- D = $101110 = x^5 + x^3 + x^2 + x$
- $G = 1001 = x^3 + 1$

$$r = \deg(G) = 3$$

Shift D r bits to the left:

$$x^r \cdot D = x^8 + x^6 + x^5 + x^4$$

$$x^r \cdot D = 101110000$$

- Now we can divide x^r · D by G:
 - on board

CRC Example

Want:

 $D.2^r$ XOR R = nG

equivalently:

 $D.2^r = nG XOR R$

equivalently:

if we divide D.2^r by G, want remainder R

R = remainder
$$\left[\frac{D \cdot 2^r}{G}\right]$$

CRC Example (cont.)

- D = $101110 = x^5 + x^3 + x^2 + x$
- $G = 1001 = x^3 + 1$
 - $r = \deg(G) = 3$
- Now we can divide x^r · D by G:
 - we get: R = x + 1 = 011
- Sender sends:
 - $DR = x^r \cdot D + R = 101110011$

Ethernet's CSMA/CD

Kurose & Ross, Chapter 5.5.2 (5th ed.)

The algorithm

When a the network layer generates a new frame:

- 1. If the adapter senses the channel to idle (that is no signal detected for 96 bit times) start transmitting the frame
- Otherwise (channel is busy) wait until you sense no signal energy (plus 96 bit times) and then start transmitting
- 3. While transmitting listen for signal coming from other adapters. If the adapter transmitted the entire frame without detecting signal energy – it is done with the frame.
- 4. If signal energy is detected while transmitting stop transmitting the frame.
 - I. Transmit a 48 bit jam-signal
 - II. Exponential backoff: after experiencing the n-th collision is a row for the current frame choose K randomly from $\{0, 1, ..., 2^m 1\}$ with $m = min\{n, 10\}$. Wait $K \cdot 512$ bit times and return to step 1.

The jam signal

- The jam-signal makes sure all other transmitting adapters are aware of the collision
 - Suppose that A starts to transmit
 - Just before A's signal reaches B, B begins to transmit
 - B senses A's signal and aborts.
 - B transmitted just a few bits before aborting. These bits propogate to A but might not constitute enough energy for A to detect the collision!
 - To make sure A detects the collision, B transmits the 48-bit jam signal

Exponential backoff

- When an adapter first detects collision, it cannot know how many adapters are involved in the collision,
- Exponential backoff dynamically adapts the waitingtime before reattempting transmission to the number of adapters involved in the collision
 - Few adapters involved: Choose K from a small set, so that no one waits unnecessarily
 - Many adapters involved: Choose K from a large set, so everyone is likely to choose a different time to transmit, and the collision will be resolved.

Exponential backoff example

- Assume A and B both have a new frame to transmit.
 They both begin to transmit exactly on the same time and collide.
- They both choose K from {0, 1}
- The possible outcomes:

Exponential backoff example (cont.)

Case	A chooses	B chooses	Probability	Outcome
(a)	0	0	0.25	another collision on round 2
(b)	0	1	0.25	A successful on round 2, B successful on round 3
(c)	1	0	0.25	B successful on round 2, A successful on round 3
(d)	1	1	0.25	another collision on round 3

CSMA/CD - אורך מסגרת מינימלי ב

- ים התכונות הבאות: נתונה רשת CSMA/CD עם התכונות
 - . כבל קואקסיאלי באורך 250 מטר
 - .100Mbit/sec קצב שידור -
 - ם מהירות סיגנל 200,000 ק"מ לשניה.
 - ?מהו אורך המסגרת המינימלי
- L: minimal frame length
- T: the time it takes to transmit a frame of length L
- Require: $T \ge RTT$

$$T \ge 2 \cdot \frac{250}{200,000 \cdot 10^3} = 2.5 \cdot 10^{-6} \, s$$

•
$$L \ge (100 \cdot 10^6) \cdot (2.5 \cdot 10^{-6}) = 250 \ bit$$

Example: Ethernet's minimal frame length

- Assume an Ethernet network with the following properties (this is quite an old network):
 - Transmission rate 10Mbps
 - Built of coaxial cables of length up to 500m
 - Up to 4 repeaters allowed
 - Signal speed on coaxial cable 200,000 km/sec
 - Every repeater adds a delay of $3\mu s$
- We show why the minimal frame length in this network is 64 bytes.

Example: Ethernet's minimal frame length

- 4 repeaters = 5 network segments
- $RTT = 2\left(\frac{5.500}{200,000 \cdot 10^3} + 4 \cdot 3 \cdot 10^{-6}\right) = 4.9 \cdot 10^{-5} s$ = $49\mu s$
- $L \ge (10 \cdot 10^6) \cdot (4.9 \cdot 10^{-5}) = 490 \ bits$
- Take the next 8-power (which is both convenient and adds a margin of safety):

$$L = 512 \ bits = 64 \ bytes$$