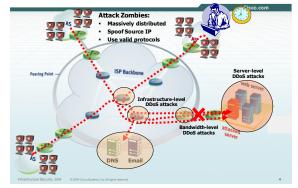
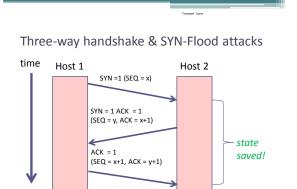
Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University

Allon Wagner


DDoS and Related Attacks

Several slides adapted from a presentation made by Dan Touitou on behalf of Cisco.

How do DDoS Attacks Start ?


The Effects of DDoS Attacks

Motivation to attack

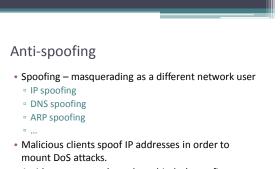
- Economically driven
 - Extortion
 - Zombie armies for hire
- Cyber-vandalism
- Cyber-terrorism / Cyber-war
- Backdrop for a more sophisticated attack
- For example, an attacker brings a target down, and can then hijack its identity

SYN Cookies – the idea time Host 1 Host 2 SYN = 1 (SEQ = x) SEQ = f(x), ACK = 1(SEQ = x+1, ACK = f(x) + 1)

SYN Cookies (somewhat simplified)

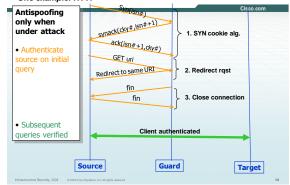
- A client sends a SYN packet.
- The server does not choose a random SEQ for its reply. Instead, it calculates a H(x) a cryptographic hash of:
- $^\circ~t$ a slowly increasing time function (e.g increases every 64 seconds)
- Server's IP and port
- Client's IP and port
- s a secret
- x client's ISN
- The SEQ returned in the SYN+ACK packet is the concatenation (t, H(x)).

SYN Cookies (somewhat simplified)

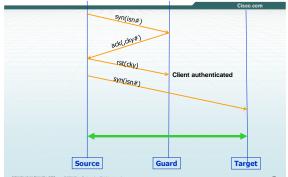

- When a new client sends an ACK with ACK=y, the server decreases 1 and obtains:
 - t allows it to ensure this is a recent request
 - the supposed hash result H'(x)
- It can recompute H(x)
- If H(x) = H'(x) the client is legitimate and a TCP connection is opened

Exercise

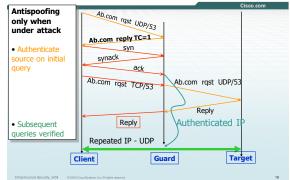
- Why is t included in the cryptographic hash?
- To prevent replay attacks.
- Assume that Eve (an Evil attacker) wants to mount a DDoS attack against a server that does not include t in its hashes.
 Eve (and Eve's zombies) create millions of legitimate connections over a period of time, and collects H(x) matching their data.
- When Eve wants to attack, she sends all these past requests
 simultaneously
- ACKs imitating the 3^{rd} step of the threeway-handshake along with their correct H(x).
- Plaintext field *t* simply says "now".
- The server cannot tell these are old requests.


Exercise (cont.)

- Why is t also given in plaintext?
- Because once a server gets the 3rd ack of the threeway handshake, it cannot know when the SYN-ACK reply was given to the client
 - i.e., what t was used to generate H(x)
- A malicious client still cannot forge *H*(*x*) because it doesn't know *s*.



• An idea to prevent (or at least hinder) spoofing: respond to the client in a way that forces it to reply.


Anti-Spoofing Defense - One example: HTTP

RST cookies - how it works

Anti-Spoofing Defense - One example: DNS Client-Resolver (over UDP)

Extra slides

SQL Injections - from an old talk I gave in the school

SQL-Injection

- Benign:
 - SELECT * FROM users WHERE name='alice' AND password='1234'
- Malicious:
 - SELECT * FROM users WHERE
 name='alice'
 AND password='1234' OR 'a'='a'
- We got ourselves a list of usernames and their respective passwords, and can access the DB

SQL-Injection (cont.)

- Benign:
 - SELECT phone FROM clients WHERE name='alice'
- Malicious:
 - SELECT phone FROM clients WHERE name='alice'; UPDATE clients SET debt=0 WHERE name='eve';--'
- Information tampering. Can also be used for DB mutilation and information disclosure

SQL-Injection - Audit Evasion

- Benign:
 - SELECT phone FROM clients WHERE name= 'alice'
- Malicious:
 - SELECT phone FROM clients WHERE name='alice'; UPDATE clients SET debt=0 WHERE name='eve';--'
- A skilled DBA will be able to track this!

SQL-Injection – Audit Evasion (cont.)

- Benign: - SELECT phone FROM clients WHERE name=`alice'
- MS SQL Server 2000 prior to SP3

XSS – Cross Site Scripting

- Aim: Getting the victim's web browser to execute malicious code
- Many variants. An example:
 Alice's server hosts an innocent web forum

XSS – An Example

