Communication Networks
(0368-3030) / Fall 2013

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Staff

* Lecturer: Prof. Hanoch Levy
= hanoch @ cs tau
= Office hours: by appointment

» Teaching Assistant: Allon Wagner
= allonwag @ post tau

o Office hours: Mon. 12-13 Schreiber M19, or by
appointment

e HW Grader:
= TBA

Homework

» 3 practical assighments
= “hands-on” network programming
o C/ C++
» 4-5 theoretical assighments
= might include some guided-reading — bonus points

o Guided-reading is considered part of the material for
the final exam

 Moodle forum for HW related questions

Requirements & Grading

* Final Exam 60%
 Practical HW assignments 20%
* Theoretical HW assignments 20%

» Submission of all the assignments is mandatory
« HW may be submitted in pairs

 There will be a closed-books final exam

= You may bring 4 pages (i.e. 2 two-sided sheets) with
you to the exam

Textbooks & Online Material

Course website:
http://www.cs.tau.ac.il/~allonwag/comnet2014A/index.html

Main textbook:

= Computer Networking: A Top-down Approach, by J. F. Kurose and
K. W. Ross (3rd edition or later).

Other references:
= Computer Networks, by A. S. Tanenbaum (4th edition or later).

= Computer Networks: A Systems Approach, by L. L. Peterson and
B. S. Davie (3rd edition or later).

= An Engineering Approach to Computer Networking, by S. Keshav.

o Unix Network Programming, by W. R. Stevens, B. Fenner and A.
M. Rudoff.

Wikipedia, and lots of online material

http://www.cs.tau.ac.il/~allonwag/comnet2014A/index.html
http://www.cs.tau.ac.il/~allonwag/comnet2014A/index.html
http://www.cs.tau.ac.il/~allonwag/comnet2014A/index.html
http://www.cs.tau.ac.il/~allonwag/comnet2014A/index.html

Why study computer networks?

» An interface between theory (algorithms,
mathematics) and practice

» Understanding the design principles of a truly
complex system

* Industry-relevant knowledge
* Fun!

* Challenges in teaching computer networks
» Students’ feedback

Introduction

Protocols

» A protocol defines:
= Format (Syntax)
= Conversation logic
= = Finite state machine!

» Open/ proprietary

rdf_send(data)

compute chksum
make_pki(sndpkt,0,data,chksum)
udt_send(sndpkt)

raf_rev(revpkt) &&
(‘corrupt(rcvpkt) | |
isNAK(rcvpkt))

udt_send(sndpki)

rdt_rev(revpkt)
&& notcorrupt(rcvpki)
&& isACK(rcvpkt)

rdt rev(revpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rev(revpkt) &&
(‘corrupt{rcvpkt) | |
isNAK(revpkt))

wait for
calll fro
above

udt_send(sndpki)

raf send(data)

compute chksum
make pki(sndpkt, 1,data,chksum)
udt_send(sndpkt)

Networking is a complex task

 Solution: modularity
o Layering
Transparency

Each layer is dependent only on the interfaces defined
by the layers above and below it

Each layer “talks” only to its equivalent on the remote
side

Each layer is implemented by a protocol

a

a

a

a

| Layering

- Host 1 Host 2
Layer 5 protocol
Layerd |4-—-——-----"-"-"""-"""-—-————— = Layer 5
Layer 4/5 interface i I
Layer 4 protocol
Layer 4 |[--——-—----------———————— w Layer 4

Layer 3/4 interface i

-l

Layer 3 [@a-————--——--—-—————————— = Layer 3

Layer 2/3 interface i

=l —-

Layer2 |(--———-——--"-—---————————— w Layer 2

Layer 1/2 interface :

el

Layer 1 - - - - - — ————— ————— e I_a},ler -"|

:

Ch.1: Introduction 1-10

el — -

FPhysical medium

Layering Models

» OSI| Reference Model
o 7 layers
= Defined by ISO (International Standards Organization)

= Widely used as a reference model, but seldom
implemented

e TCP/IP Reference Model

= 5 layers

= Protocols came first, the model is actually a
description of their workings.

= The TCP/IP suite is the backbone of today’s Internet.

Overview of the 5-layers model

* Physical layer application
= Transmits raw bits over a communication
channel
» Data link layer transport

= Control layer over the physical layer

O Framing network
* Network layer
> Delivers packets from source to data link

destination across the network
= Routing vs. Forwarding
s |n TCP/IP: IP is the forwarding protocol

physical

Overview of the 5-layers model (cont.)

» Transport layer

= Delivers data between a program on the source
machine to a peer program on the host machine.

= First end-to-end layer!

= In TCP/IP: transport
* TCP: reliable, connection-oriented
* UDP: unreliable, connectionless

« Application layer network

= A protocol (sometimes a protocol stack) to
implement the desired application service.

= Examples: data link
* Mail: SMTP, POP3, IMAP
- Remote control: Telnet -
» File transfer and sharing: FTP, Bittorrent phySICal
* Instant messaging: XMPP (Jabber)

application

source host

] Encapsulation
message | M appli¢ation
J segme/m Hi M trangport
S:;g 2?.'“ Hp Hi| M hetwork
frame [Hi|[Hn/Hy| M [T, link
physical
M — message 1011.........
H, — transport header

H, — network header
H, - link header

T, — link trailer

destination host

Ho Hi| M nefwork Hd Hi M
M HTH Hel M [T| | link HH]H] M [T,
Hi| M 1r'cm3porf , physical .
HiHi M Inetwork
Hl' Ho Hi| M T} Ilm!(I / router

HW Objective: Write a network application

* Design an application protocol
o Syntax
o Semantics
= Conversation logic
* Implement via socket programming
= An interface to the OS’s transport layer

Socket Programming - Part |

Recommended References:
Beej's Guide to Network Programming
http://beej.us/guide/bgnet/

Unix Network Programming \ W. Richard Steven

Slides for this topic, as well as other topics along the course, are partly based on
the work of previous teaching assistants to this course: Hillel Avni, Yahav
Nussbaum, David Raz, Motti Sorani, Alex Kesselman.

http://beej.us/guide/bgnet/

IP Address / Domain Names

* “Uniquely” identifies a “host” on the network
= Not really, we’ll get to that later in the course

e A 32-bit number

o For convenience represented as 4 numbers in the
range 0-255

= e.g.132.67.192.133
e Domain names
0 132.67.192.133 = nova.cs.tau.ac.il

Port

» A 16-bit number (i.e., 0-65535)

» |dentifies a service on the host

= Again, not quite, we’ll get to that later, blah-blah.
o For instance: HTTP = 80, SMTP = 25, Telnet = 23

* A socket is a combination of IP + port
0 132.67.192.133: 80

Port (cont.)

* The server listens on a certain port

* The client randomly chooses a port to which the
server answers

 For instance
94.127.73.5:1902 €<-132.67.192.133 : 80

Relevant Headers

e #finclude <sys/socket.h>

= Sockets
» #include <netinet/in.h>

o |nternet addresses
» #finclude <arpa/inet.h>

= Working with Internet addresses
 #finclude <netdb.h>

= Domain Name Service (DNS)
 #finclude <errno.h>

= Working with errno to report errors

Address Representation

struct sockaddr {
u short sa family;
char sa data[1l4];

b
» sa_family
= specifies which address family is being used
= determines how the remaining 14 bytes are used

Address Representation — Internet Specific

struct sockaddr in {
short sin family; /* = AF INET */
u short sin port;
struct in addr sin addr;
char sin zero[8]; /* unused */

b

struct in addr
uint32 t s addr;

J

» Except for sin_family, all contents are in network order

Big Endian / Little Endian

 Memory representation of multi-byte numbers:
= 2882400018, = ABCDEF12,
= Big Endian: OxAB CD EF 12
o Little Endian: Ox 12 EF CD AB
* Hosts on the web use both orders
* On the network all use big endian (= network order).
* Numbers used for port number, IP etc. should thus
be converted
= htonl () / ntohl() / htons() / ntohs()

Reliable vs. Unreliable Sockets

SOCK_STREAM SOCK_DGRAM

reliable transport unreliable transport
connection-oriented connectionless
keeps state stateless
more resources heeded lightweight

TCP UDP

Session overview

« We will start with reliable transport (TCP)

socket()

bind()

socket() listen()
connect() & session setup - accept()
send() data transfer - recv()
recv() & data transfer send()

close() &terminate session—> close()

Socket Creation — socket()

e 1nt socket(int domain, 1int type, 1nt
protocol) ;
e domain: PF_INET for IPv4

* type: for our purposes either SOCK_STREAM or
SOCK_DGRAM

* protocol: can be set to 0 (default protocol)

» Returns the new socket descriptor to be used in
subsequent calls, or -1 on error (and errno is set
accordingly).

* Don’t forget to close the socket when you’re done with it

Bind socket to IP and port — bind()

e Int bind(i1nt sockfd, const struct
sockaddr *my addr, socklen t
addrlen) ;

 sockfd : socket descriptor

 my_addr: address to associate with the socket

= The IP portion often set to INADDR_ANY which means
“local host”

 addrlen: set to sizeof(my_addr)

» Returns 0 on success, or -1 on error (and errno is set
accordingly).

Wait for an incoming call — listen()

e int listen (int sockfd, 1nt backloqg);

 sockfd : socket descriptor

» backlog: number of pending clients allowed, before
starting to refuse connections.

» Returns 0 on success, or -1 on error (and errno is set
accordingly).

Accept an incoming connection — accept()

e Int accept(int sockfd, struct sockaddr
*addr, socklen t *addrlen);

» sockfd : socket descriptor

e addr: filled in with the address of the site that's
connecting to you.

 addrlen: filled in with the sizeof() the structure returned
in the addr parameter

» Returns the newly connected socket descriptor, or -1 on
error, with errno set appropriately.

e Don’t forget to close the returned socket when you're
done with it

Server-side example

sock = socket (PF INET, SOCK STREAM, O0);
myaddr.sin family = AF INET;

myaddr.sin port htons(30);
myaddr.sin addr htonl (INADDR ANY);

bind (sock, &myaddr, sizeof (myaddr)):;
listen(sock, 5);

sin size = sizeof (struct sockaddr in);

new sock = accept(sock, (struct sockaddr¥*)
&their a dr, &sin 51ze);

* |In real-life code, don’t forget to check for errors

Session overview

 Reliable transport (TCP)

socket()

bind()

socket() listen()
connect() & session setup - accept()
send() data transfer - recv()
recv() & data transfer send()

close() &terminate session—> close()

Connect to a listening socket — connect()

e 1nt connect (int sockfd, const struct
sockaddr *serv addr, socklen t addrlen);

» sockfd : socket descriptor
» serv_addr: the address you’re connecting to.
 addrlen: filled with sizeof(serv_addr)

» Returns 0 on success, or -1 on error (and errno is set
accordingly).

* Most of the times, no bind() is required on the client side:

= |f bind() wasn’t called, the local IP address and a random high
port are used.

Client-side example

sock = socket (PF INET, SOCK STREAM, O0);

dest addr.sin family = AF INET;
dest addr.sin port = htons(80);
dest addr.sin addr = htonl (0x8443FCo64) ;

connect (sock, (struct sockaddr¥*)
&dest addr, sizeof (struct sockaddr));

e In real-life, the server’s IP is not hard-coded
* In real-life code, don’t forget to check for errors

Session overview

initiated, both parties are socket()

socket()
equal: _
= Both can send and receive bind()
data listen()
o= Both can decide it’s time
_ connect() accept()
to close the connection
« As long as the listening LEmnEEiEe
socket is open, it can close() close()
accept new incoming
clients

o by calling accept() accept()

Closing a connection — close()

e int close (1nt sockfd):;
sockfd : socket descriptor

returns 0 on success, or -1 on error (and errno is set
accordingly)

After we close a socket:
= |f the remote side calls recv(), it will return O.

= |f the remote side calls send(), it will receive a signal SIGPIPE and
send() will return -1 and errno will be set to EPIPE.

shutdown() can be used to close only one side of the session
= Rarely used
= Refer to the man pages

Session overview

* Unreliable transport (UDP)

“1

socket()
socket() bind()
sendto() data transfer > recvfrom()
recvfrom() & data transfer sendto()

close() close()

Sending data (TCP + UDP)

TCP: ssize_t send(int socket, const void
*buffer, size_ t length, int flags);

UDP: ssize_ t sendto(int socket, const void
*buffer, size t length, int flags, const
struct sockaddr *dest addr, socklen t

dest len);

buffer, length: buffer of the data to send, and number of
bytes to send from it.

flags: send options. Refer to the man pages. Use O for “no
options”.

In unconnected sockets (UDP) you specify the destination in
each sendto().

Partial send

» send() and sendto() return the number of bytes
actually sent, or -1 on error (and errno is set
accordingly).

 The number of bytes actually sent might be less than
the number you asked it to send.

A code considering that
(Use it for TCP. For UDP it makes less sense — we will discuss later)

int sendall (int s, char *buf, int *len) {

int total = 0; // how many bytes we've sent
int bytesleft = *len; // how many we have left to send
int n;

while (total < *len) {
n = send(s, buf+total, bytesleft, 0);
if (n == -1) { break; }
total += n;
bytesleft -= n;
}
*len = total; // return number actually sent here
return n == -1 ? -1:0; //-1 on failure, 0 on success

}
Source: Beej's Guide to Network Programming

Receiving data (TCP + UDP)

« TCP: ssize t recv(int socket, void
*buffer, size t length, int flags);

* UDP: ssize t recvfrom(int socket,
void *buffer, size t length, int
flags, struct sockaddr *from addr,
socklen t from len);

 buffer, length: allocated space for the received data,
and its size (= max data received by this call)

* flags: receive options. Refer to the man pages. Use O
for “no options”.

Receiving data (TCP + UDP) (cont.)

* recv() and recvfrom() return the number of bytes
received, or -1 if an error occurred (and errno is set
accordingly).

e In TCP sockets, O is returned if the remote host has
closed its connection.
= This is often used to determine if the remote side has

closed the connection.

* In unconnected sockets (UDP) from _addr will hold upon
return the source address of the received message.

* from_len should be initialized before the call to
5|zeof(from addr). It is modified on return to indicate the
actual size of the address stored in from _addr.

Translating a host name to an IP address

struct hostent *gethostbyname (const char
*name) ;

o deprecated

int getaddrinfo (const char *hostname,
const char *servname, const struct
addrinfo *hints, struct addrinfo **res):;

Supports many options and thus seems complex, but basic

use is simple.

o Refer to Beej’s guide for more info and for a simple example of
its use:
http://beej.us/guide/bgnet/output/html/multipage/getaddrinfo
man.html

Don’t forget to use freeaddrinfo() to release memory when

you’re done with getaddrinfo’s result.

Other Useful Functions

* inet ntop(), 1net pton()
= Convert IP addresses to human-readable text and back
e getpeername ()
= Return address info about the remote side of the
connection.
= Used after calling accept() (server) or connect() (client)
e gethostname ()

o returns the standard host name for the current
processor

What do we send?

Tips for defining a protocol

Binary protocols

» Uniform endianity for numbers An example:
» String representation: * A DNS response for the query
= Bad: decide on maximal length WWW .icann.org:
hello = 9173818000010001 0000
Ox 68 65 6C 6C 6F 00 00 00 00 00000377777705696361
= Better: use a length field 6e 6e 03 6f 72 67 00 00 01 00
hello = 01c00c00010001000002
Ox 05 00 68 65 6C 6C 6F 58 00 04 c0 00 20 07
(note that the integer is in little For instance, bytes 0-1 are
endian) transaction ID, bytes 2-3 hold
» Length field can also be applied various flags.
to fields of variable length (e.g., o Text view:
options) Sereereenees WWW

dcann.org.............. X.....

Textual Protocols — An example

HTTP request for the page The response:
http://www.ietf.org/rfc/rfc3514.txt HTTP/1.1 200 OK

Date: Sun, 13 Feb 2011 14:32:45 GMT

GET /rfc/rfc3514.txt HTTP/1.1 Last-Modified: Fri, 28 Mar 2003
Host: www.ietf.org 18:36:14 GMT
Accept: Content-Encoding: gzip
text/html,application/xhtml+xml,a Content-Length: 4486
pplication/xml;q=0.9,*/*;q=0.8 Keep-Alive: timeout=15, max=100
Accept-Language: en-us,en;q=0.5 Connection: Keep-Alive
Accept-Encoding: gzip,deflate Content-Type: text/plain
Accept-Charset: ISO-8859-1,utf-
8;9=0.7,*;9=0.7

Keep-Alive: 115
Connection: keep-alive

http://www.ietf.org/rfc/rfc3514.txt
http://www.ietf.org/rfc/rfc3514.txt
http://www.ietf.org/rfc/rfc3514.txt

Know the difference between TCP and UDP

TCP UDP
» Reliable « Unreliable
» Transfers a stream of data s Should consider that when
s send() and recv() do not working with UDP
necessarily match message o e.g., set a timeout when
boundaries! sending a query and waiting
= Can receive multiple messages for a response
together / parts of messages. » Transfers datagrams

= The application protocol must
define a way to separate
messages within the stream.

» Affected by congestion —
avoidance mechanism etc.

Word of caution - packing

« Assume you want to have a struct represent your
protocol header (or part of it)

struct ProtocolHeader {
unsigned short datagramLength;
unsigned short datagramType;
unsigned char flag;

/) ...
} s

Word of caution — packing (cont.)

» Compiler may add vinclude <stddetn>
padding to guarantee |
alignment Stri;tosrt{i' //2 bytes
s Simply sending the struct intj; 1/4 bytes

“as-is” is not portable char k; //1 byte
double [; //8 bytes

- Output: } |
o0 4 8 16 |{nt main()

o S’'s size 1s: 24 printf("%ld ", offsetof(S, i));

printf("%ld ", offsetof(S, j));

printf("%ld ", offsetof(S, k));
printf("%ld\r\n", offsetof(S, 1));

printf("S's size is: %ld\r\n\r\n", sizeof(S));

Word of caution — packing (cont.)

1 1 . #include <stdio.h>

* Possible solution: tinclude <stddefh>

use #pragma pack and

#pragma pack(push, 1)
H#pragma pop struct T {
= Code portability issues i [fabves vtes
char k; //1 byte
° Output, double I; //8 bytes
) Iy
O O % 6] #pragma pack(pop)
o T's size 1s: 15 int main()

{
printf("%Id ", offsetof(T, i));
printf("%Id ", offsetof(T, j));
printf("%ld ", offsetof(T, k));
printf("%ld\r\n", offsetof(T, I));
printf("T's size is: %ld\r\n\r\n", sizeof(T));

Socket Programming - Part ||
Handling blocking calls

Blocking function calls

* Many of the functions we saw block until a certain
event
s accept: until a client initiates a session
= connect: until the connection is (half) established
= recv, recvfrom: until a data is received
= send, sendto: until data is pushed into the socket’s buffer

* For simple programs, blocking is convenient
* What about more complex programs?
= multiple connections

o simultaneous sends and receives
s simultaneously doing non-networking processing

How do we handle blocking?

e Initiate multiple threads
» Do not allow blocking by the use of fcntl()

 Call a function only when it’s guaranteed not to
block
= select(), pselect(), poll(), ppoll()
= select() gets a set of fd’s and returns which of them is

- Read-ready: recv() (data socket) or accept() (listening
socket) will not block

* Write-ready: send() will not block

select()

* 1nt select(int nfds, fd set *readfds,
fd set *writefds, fd set *exceptfds,
struct timeval *timeout):;

* nfds: highest-numbered file descriptor in any of the three

sets, plus 1.

» readfds, writefds, exceptfds: sets of fd's to see if they're
read-ready, write-ready or except-ready
o “Exceptional conditions” are not errors, but rather states of

the sockets (e.g. TCP’s urgent ptr is set).
= Any set can be replaced with NULL - the corresponding
condition will not be checked.

select() (cont.)

» Returns when at least one of the watched fd’s
becomes ready, or when the timeout expires

= Returns the total number of ready fd’s in all the sets.
The sets are changed to indicate which fd’s are ready.

= Returns O if timeout expired
= Returns -1 on error (and errno is set accordingly).

Working with fd set

» fd_set is just a bit vector

* void FD ZERO (fd set *set)
o |nitializes to an empty set

* void FD SET (int fd, fd set *set)
= Adds fd to the set

 int FD ISSET (int fd, fd set *set)
= Returns non-zero value if fd is in the set, 0 otherwise

* void FD CLR (int fd, fd set *set)
= Removes fd from the set

 stdin, stdout, stderr are associated with fd’s 0, 1, 2
respectively

select’s timeout argument

struct timeval {
long tv sec; /* seconds */

long tv usec; /* microseconds, always less
than 1076 */

I

» Pass (0,0) to return immediately

» Pass NULL pointer to wait indefinitely until one of
the fd’s is ready

* Some OS’s decrease the time elapsed, some don’t
o Linux does

select example:
reading from multiple active sockets

fd set read fds;

// main loop of the program
for(;;) |
FD ZERO (&read fds); //reset fd set
FD SET (listening sock, é&read fds);
for(/* for each active client with fd = client sock */) {
FD SET (client sock, é&read fds);
}
fdmax = //.. the highest fd in read fds

select (fdmax + 1, &read fds, NULL, NULL, NULL);

if (FD_ISSET(listening sock , &read fds)) {
// listening socket is read-ready: a new client is available.
// new client sock = accept(listening sock,

for(/* for each active client with fd = client sock */) {
if (FD ISSET(client sock , &read fds)) {
// client socket is read ready - unread data is available
// nbytes = recv(client sock,
}
} //END main program loop

