Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

TCP Flow & Congestion Control

Kurose & Ross, Chapter 3.5.5, 3.7 (5t ed.)

Many slides adapted from:

J. Kurose & K. Ross \

Computer Networking: A Top Down Approach (5t ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-3

Fast Retransmit

% time-out period often <« if sender receives 3

relatively long: ACKs for the same
= long delay before data, it supposes that
resending lost packet segment after ACKed
% detect lost segments data was lost:
via duplicate ACKs. = fast retransmit: resend
= sender often sends segment before timer
many segments back-to- expires
back

= if segment is lost, there
will likely be many
duplicate ACKs.

Transport Layer 3-4

Host B

timeout

€senq onq
S€9men
t

v v

time

—_

Figure 3.37 Resending a segment after triple duplicate ACK
Transport Layer 3-5

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

)
' \

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-6

TCP Flow Control

-flow control

sender won't overflow

% receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast
k— RevWindow —

data from ? _ ; 2 application - 5peed—ma’rchin9

i [process service: matching the
//// send rate to the
b RevBuffer ——— receiving app's drain
rate

% app process may be
slow at reading from

buffer

Transport Layer 3-7

TCP Flow control: how it works

k— RevWindow —f

007 + rcvr advertises spare
/ //__appucaﬁm room by including value

data from

F proSEss of ReviWindow in
Z / Z / segments
f———— RevBuffer ——— ..
| + sender limits unACKed

(suppose TCP receiver data to RevWindow

dISCGr'dS OUT-Of-OI"dZI" n guaran'rees r-eceive

segments) buffer doesn't overflow
% spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 3-8

Approaches towards congestion control

Two broad approaches towards congestion control:

end-end congestion network-assisted
control: congestion control:

+ no explicit feedback from <« routers provide feedback
network to end systems

% congestion inferred from = single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

<+ approach taken by TCP ATM)

= explicit rate sender
should send at

Transport Layer 3-9

TCP congestion control: additive increase,

multiplicative decrease
% approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

= additive increase: increase cwnd by 1 MSS every
RTT until loss detected

= multiplicative decrease: cut cwnd in half after
loss

24 Kbytes —

saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —

time

cwnd: congestion window size

Transport Layer 3-10

TCP Congestion Control: details

% sender limits tfransmission:
LastByteSent-LastByteAcked
< cwnd

% roughly,

How does sender

cwnd

rate = RTT DBYtes/sec

% cwnd is dynamic, function of
perceived network congestion

perceive congestion?

<+ loss event = timeout or
3 duplicate acks

<+ TCP sender reduces
rate (cwnd) after loss

event
three mechanisms:

= ATMD
= slow start

= conservative after
timeout events

Transport Layer 3-11

TCP Slow Start

+ when connection
begins, increase rate
exponentially until
first loss event:

= jnitially cwnd = 1 MSS
= double cwnd every RTT

= done by incrementing
cwnd for every ACK

received
% summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-12

Refinement: inferring loss

% after 3 dup ACKs:
= cwnd is cut in half

— Philosophy:

= window then grows
linearly + 3 dup ACKs indicates

network capable of

<« but after timeout event: wers
delivering some segments

* cwnd instead set to 1 + timeout indicates a

MSS; “more alarming”

= window ‘rhen grows congestion scenario
exponentially

= t0 a threshold, then
grows linearly

Transport Layer 3-13

Refinement

I~
|

Q: when should the
exponential
increase switch to
linear?

: when cwnd gets to
1/2 of its value
before timeout.

—
[\
I

Congestion window
(in segments)

o N B OO0 o O
1 1 | |

ssthresh

TCP Tahoe

TCP Reno

ssthresh

o

Implementation:
< variable ssthresh

<+ onh loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

Fr T
1 2 3 4 5 6 7 8 9

Transmission round

10 11

b
12 13 1

4 15

Transport Layer 3-14

Summary: TCP Congestion Cont ol

__new ACk

duplicate ACK cwnd = cwnd + MSS s (MSS/cwnd)

dupACKcount++ NeWACK dupACKcount =
cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount =0
A transmit new segment(s), as allowed
cwnd =1 MSS
ssthresh = 64 KB cwnd > ssthresh
dupACKcount =0 - A
———————————— -»> -
= -
(9 X) timeout
'\ %)) ssthresh = cwnd/2 _
=Ta (/ cwnd = 1 MSS duplicate ACK
N\ timeout dupACKcount = 0 dupACKcount++
< sSthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 zZa
retransmit missing segment ((: N1
timeout'\%, %))
ssthresh = cwnd/2 ra 2 ;
cwnd =1 New ACK
dupACKcount = 0 cwnd = ssthresh
dupACKcount == retransmit missing segment dupACKcount = 0 dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer

3-15

(2009/10) jr2mn 09K%Ww

TCP Reno DNMIATX YW NIRY7 [IN)

.34KB — 7 62KB — n cwnd NX N'WY YIN'R N7 ¢t N1
?V7INNAN NN

MSS = 1KB =

SS—2 IN CA — 2 x¥n1 TCP YwND .3 dup acks I7apnn =

:VaI?71 Fast Recovery — 7 0101 XIn 3 dup acks D'7apnni

cwnd
sshresh = >

cwnd = ssthres + 3MSS

?V1IRNN WNK7? ssthresh 1V nn
N7un? NImxn '97 ,31KB -

(2009/10) jrann 79RY

TCP Reno DNMIATX YW NIRY7 [IN)
.1KB — 7 34KB — n cwnd NX N'WUY YIN'R N7 t, AT

VI NN
MSS = 1KB =

timeout w1 SS—2 IX CA — 2 X¥n1 TCP ©YWNXD .timeout V'K ©
VAl SS—7 711N XN

cwnd
sshresh = >
cwnd = 1MSS

?V1IRNN WNK7? ssthresh 1V nn
N7un7 NIxnN '97 ,17KB -

(2010/11 'R 7vI0) 7200 T9RY

.Host B—"7 n'2im1 n71w Host A 121 TCP Nw'pa 21N e
NN AT 7'W9 12D YNYNW NNX INP71 D'AXIAN DN e

'97 A ¥ Congestion Control— N NIANINN YNX DRIV 1IX »
2121 NX¥N2 AX¥INW TCP Reno 7w vwionn 7Tmn

cwnd 17N 7 AN'7UN NN7wWn "NR 7 NInwn cwnd onivn [I7N
17w acks — n 70 n7ap1 DY

1DV 212'0N 9102 'TX ,ssthresh NX 21V cwnd 212'0 Y¥NN2 DN
.ssthresh p1I'12 XIn cwnd 7w

NT'N NI NN G timeout DAl 3 dup acks DA A12'02 NN DX
timeout '97

dup acks 112y cwnd NX 7'TAN7 NIYWONRNY Np'00MIA WIN'Y |'N
cwnd NX D0'7'Tan X7 ,0192) fast retransmit — 2 2D 17ApNNY
.(ssthresh nI'n? IMIx 0'valp VIYD K7X ssthresh+3 NI'NY

m}

(2010/11 'R 7vI0) 7200 T9RY

YINN cc UR wpn W MSS - ninn - e

TNI'M ssthresh cwnd 'l .CA-nnY%w 94,2000 -
nT 272 Siate A |

1

33,000 2

3

4,000 4

8,000 5

16,000 6

18,000 7

20,000 8

TNI'N
N7 AYwa

Timeout

SSt/
CA

SSt /
CA

SSt

SSt

CA/
S.St

CA

ssthresh

33,000

33,000

16,000 /
18,000

16,000 /

34,000

32,000 /

36,000

2000

4,000

8,000

16,000

18,000

20,000

AN TORY
(2010/11 'X 7¥17)

N7101 D"ONN D'P7NN NN IR
.02 0'Y'OIMnN 021NN "oy

VAKX OX DIvO? ' "ynx" q10a
TNNX 112V 3Dup IX Timeout
[17NN NNA0N2 NTIYY 0'0INA0N
VX X7 DX .DINT MW IXRINNN
SR Dien? wr nm v

— ¥ NNXY NIIYN DA D72y
N7 215' 1)) 3 29w ssthresh
DAY 0''wn 73 oy) 18,000
17wn) 0 2%7wa TRW 190 (DN
cwnd - v 72571, (1 2% 9%
71N '97 .ssthresh NX NIy pIrTa
TCP N0ONA7 NTAINY DIN"I'MN

17vAW MNIXK DT ,N7XWAY NLDIYON

nn ,cwnd = 33,000 NnI'n7 "y 1
N7RYUN N PNt XY

- |
TNI'N ssthresh

nT A7va State
MANN TIRY
16,000 /
'N SS/CA 33,000 ' 1 '
| / 34,000 (2010/11 ') 7311)
_ 32,000 /
Timeout SS/CA 33,000 5 B
/ IWUNND 9 MY NX IN7N -
000 NNIN2 NNTIZN N7207
I'N SS 000/ 2000 3 T2 cwnd 1Y DT A7vWAY
18,000
I'N SS " 4,000 4
|'N ! " 8,000 5
I'N SS/CA " 16,000 6
I'N CA " 18,000 7
Timeout /
" " 20,000 8
3 dup acks
2,000
vImKN? SS/CA 10,000 / 9

10,000

(2010/11 'R 7vI0) 7200 T9RY

V19 yNyn 7 27wa D NNy N e
Mmpn WX ,"NMmx" TCP Reno 97
NXIND NAXIN 17W D'AXYNN

18,000 7.0 N7357 NXR PTYNN cwnd i e

18.222 71 NX MW .0INA0 7D 7w IWRND
7¥ DMIY'RN N727 NN cwnd
.DIIYXIN D'VINA0N Y

D'AXNN N1DNN NNONN NX DT »

18,442 7.2

MSS
cwnd = cwnd + MSS - (>
cwnd

(2010/11 'R 7vI0) 7200 T9RY

Triple -7 naana TCP Reno NI TN vITAn N'aonN
.Timeout 7¥ nIpn2a nI1nn NMIvw Duplicate

DA NT 72X ,loss N'N DINXY N'0 3 dup acks W' AWUKD e
72 ,"3WUN TX7 NIYD 0'0INA0 NN'AVA DYDY N'0
NINS D'TY¥] VIZI7 AYWON D71 ,NTPONN [TV R'NY

.congestion — N OV NITTINNNT? D"VONT
7701 NYONY NNP'TI'R 17 I'N Timeout W'w) e
NI NN congestion D'N'IN NNAX 271 ,NTPONN

