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TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap
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Fast Retransmit

% time-out period often <« if sender receives 3

relatively long: ACKs for the same
= long delay before data, it supposes that
resending lost packet segment after ACKed
% detect lost segments data was lost:
via duplicate ACKs. = fast retransmit: resend
= sender often sends segment before timer
many segments back-to- expires
back

= if segment is lost, there
will likely be many
duplicate ACKs.
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Figure 3.37 Resending a segment after triple duplicate ACK
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Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

)
' \

a duplicate ACK for fast retransmit
already ACKed segment
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TCP Flow Control

-flow control

sender won't overflow

% receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast
k— RevWindow —

data from ? _ ; 2 application - 5peed—ma’rchin9

i [ process service: matching the
//// send rate to the
b RevBuffer ——— receiving app's drain
rate

% app process may be
slow at reading from

buffer
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TCP Flow control: how it works

k— RevWindow —f

007 + rcvr advertises spare
/ //__appucaﬁm room by including value

data from

F proSEss of ReviWindow in
Z / Z / segments
f———— RevBuffer ——— ..
| + sender limits unACKed

(suppose TCP receiver data to RevWindow

dISCGr'dS OUT-Of-OI"dZI" n guaran'rees r-eceive

segments) buffer doesn't overflow
% spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]
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Approaches towards congestion control

Two broad approaches towards congestion control:

end-end congestion network-assisted
control: congestion control:

+ no explicit feedback from <« routers provide feedback
network to end systems

% congestion inferred from = single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

<+ approach taken by TCP ATM)

= explicit rate sender
should send at
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TCP congestion control: additive increase,

multiplicative decrease
% approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

= additive increase: increase cwnd by 1 MSS every
RTT until loss detected

= multiplicative decrease: cut cwnd in half after
loss

24 Kbytes —

saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —

time

cwnd: congestion window size
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TCP Congestion Control: details

% sender limits tfransmission:
LastByteSent-LastByteAcked
< cwnd

% roughly,

How does sender

cwnd

rate = RTT  DBYtes/sec

% cwnd is dynamic, function of
perceived network congestion

perceive congestion?

<+ loss event = timeout or
3 duplicate acks

<+ TCP sender reduces
rate (cwnd) after loss

event
three mechanisms:

= ATMD
= slow start

= conservative after
timeout events
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TCP Slow Start

+ when connection
begins, increase rate
exponentially until
first loss event:

= jnitially cwnd = 1 MSS
= double cwnd every RTT

= done by incrementing
cwnd for every ACK

received
% summary: initial rate is
slow but ramps up
exponentially fast

time
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Refinement: inferring loss

% after 3 dup ACKs:
= cwnd is cut in half

— Philosophy:

= window then grows
linearly + 3 dup ACKs indicates

network capable of

<« but after timeout event: wers
delivering some segments

* cwnd instead set to 1 + timeout indicates a

MSS; “more alarming”

= window ‘rhen grows congestion scenario
exponentially

= t0 a threshold, then
grows linearly
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Refinement

I~
|

Q: when should the
exponential
increase switch to
linear?

: when cwnd gets to
1/2 of its value
before timeout.

—
[\
I

Congestion window
(in segments)

o N B OO0 o O
1 1 | |

ssthresh

TCP Tahoe

TCP Reno

ssthresh

o

Implementation:
< variable ssthresh

<+ onh loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

Fr T
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Transmission round

10 11

b
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Summary: TCP Congestion Cont ol

__new ACk

duplicate ACK cwnd = cwnd + MSS s (MSS/cwnd)

dupACKcount++  NeWACK dupACKcount =
cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount =0
A transmit new segment(s), as allowed
cwnd =1 MSS
ssthresh = 64 KB cwnd > ssthresh
dupACKcount =0 - A
———————————— -»> -
= -
(9 X ) timeout
'\ %)) ssthresh = cwnd/2 _
=Ta (/ cwnd = 1 MSS duplicate ACK
N\ timeout dupACKcount = 0 dupACKcount++
< sSthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 zZa
retransmit missing segment ((: N1
timeout'\%, %))
ssthresh = cwnd/2 ra 2 ;
cwnd =1 New ACK
dupACKcount = 0 cwnd = ssthresh
dupACKcount == retransmit missing segment dupACKcount = 0 dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed
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