
ב"תשע/טבת/ד"י

1

Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Kurose & Ross, Chapter 3 (5th ed.)

Many slides adapted from:

J. Kurose & K. Ross \
Computer Networking: A Top Down Approach (5th ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

Transport Layer 3-3

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow

in same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-4

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-5

TCP seq. #’s and ACKs
Seq. #’s:

 byte stream
“number” of first
byte in segment’s
data

ACKs:

 seq # of next byte
expected from
other side

 cumulative ACK

Q: how receiver handles
out-of-order segments

 A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time

simple telnet scenario

Transport Layer 3-6

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

 longer than RTT
 but RTT varies

 too short:
premature timeout

 unnecessary
retransmissions

 too long: slow
reaction to segment
loss

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 ignore retransmissions

 SampleRTT will vary, want
estimated RTT “smoother”

 average several recent
measurements, not just
current SampleRTT

ב"תשע/טבת/ד"י

2

Transport Layer 3-7

TCP Round Trip Time and Timeout

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 influence of past sample decreases exponentially fast

 typical value:  = 0.125

Transport Layer 3-8

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

Transport Layer 3-9

TCP Round Trip Time and Timeout

Setting the timeout
 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +

 *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

 Then set timeout interval:

Transport Layer 3-10

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

 initialize TCP variables:

 seq. #s

 buffers, flow control
info (e.g. RcvWindow)

 client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
 server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

 specifies initial seq #

 no data

Step 2: server host receives
SYN, replies with SYNACK
segment

 server allocates buffers

 specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Three-way handshake

Transport Layer

3-11

Host 1 Host 2 time

SYN =1 (SEQ = x)

SYN = 1 ACK = 1
(SEQ = y, ACK = x+1)

ACK = 1
(SEQ = x+1, ACK = y+1)

Transport Layer 3-12

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client server

close

close

closed

ti
m

e
d
 w

ai
t

ב"תשע/טבת/ד"י

3

Transport Layer 3-13

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client server

closing

closing

closed

ti
m

e
d
 w

ai
t

closed

Transport Layer 3-14

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

TCP’s statechart
• On board

▫ Statechart appears in RFC 793
• Discussion of:

▫ TIME_WAIT state
 Connection in TIME_WAIT state cannot move to the CLOSED state until it has

waited for two times the maximum segment lifetime (MSL).
 Why? We do no not know whether the ack sent in response to the other side’s

FIN was delivered. The other side might retransmit its FIN segment.
 This second FIN might be delayed in the network. If the connection were allowed

to move directly to the CLOSED state, then another pair of application processes
could have opened the same connection (i.e., use the same port numbers).

 The delayed FIN from the previous incarnation terminates the later incarnation
of the same connection.

 Because only a connection between the same endpoints can cause the
confusion, only one endpoint needs to hold the state.

▫ Syn flood attacks

Transport Layer

3-15

Extra slides
Review of lecture, if time permits

Transport Layer 3-17

TCP reliable data transfer

 TCP creates rdt
service on top of IP’s
unreliable service

 pipelined segments

 cumulative acks

 TCP uses single
retransmission timer

 retransmissions are
triggered by:
 timeout events

 duplicate acks

 initially consider
simplified TCP sender:
 ignore duplicate acks

 ignore flow control,
congestion control

Transport Layer 3-18

TCP sender events:
data rcvd from app:

 Create segment with
seq #

 seq # is byte-stream
number of first data
byte in segment

 start timer if not
already running (think
of timer as for oldest
unacked segment)

 expiration interval:
TimeOutInterval

timeout:

 retransmit segment
that caused timeout

 restart timer

 Ack rcvd:

 If acknowledges
previously unacked
segments
 update what is known to

be acked

 start timer if there are
outstanding segments

ב"תשע/טבת/ד"י

4

Transport Layer 3-19

TCP
sender
(simplified)

 NextSeqNum = InitialSeqNum

 SendBase = InitialSeqNum

 loop (forever) {

 switch(event)

 event: data received from application above

 create TCP segment with sequence number NextSeqNum

 if (timer currently not running)

 start timer

 pass segment to IP

 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout

 retransmit not-yet-acknowledged segment with

 smallest sequence number

 start timer

 event: ACK received, with ACK field value of y

 if (y > SendBase) {

 SendBase = y

 if (there are currently not-yet-acknowledged segments)

 start timer

 }

 } /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
acked byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-20

TCP: retransmission scenarios

Host A

time
premature timeout

Host B

S
e
q=

9
2

 t
im

e
ou

t

Host A

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

time

S
e
q=

9
2

 t
im

e
ou

t

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100

Transport Layer 3-21

TCP retransmission scenarios (more)

Host A

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

Transport Layer 3-22

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

Immediately send single cumulative

ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

Transport Layer 3-23

Fast Retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-to-
back

 if segment is lost, there
will likely be many
duplicate ACKs.

 if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
 fast retransmit: resend

segment before timer
expires

Transport Layer 3-24

Host A

ti
m

eo
ut

Host B

time

X

Figure 3.37 Resending a segment after triple duplicate ACK

ב"תשע/טבת/ד"י

5

Transport Layer 3-25

 event: ACK received, with ACK field value of y

 if (y > SendBase) {

 SendBase = y

 if (there are currently not-yet-acknowledged segments)

 start timer

 }

 else {

 increment count of dup ACKs received for y

 if (count of dup ACKs received for y = 3) {

 resend segment with sequence number y

 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-26

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-27

TCP Flow Control

 receive side of TCP
connection has a
receive buffer:

 speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

 app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

Transport Layer 3-28

TCP Flow control: how it works

(suppose TCP receiver
discards out-of-order
segments)

 spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

 rcvr advertises spare
room by including value
of RcvWindow in
segments

 sender limits unACKed
data to RcvWindow
 guarantees receive

buffer doesn’t overflow

