Communication Networks (0368-3030) / Spring 2011
The Blavatnik School of Computer Science, Tel-Aviv University

Allon Wagner

Network Layer - Routing

Kurose \& Ross, Chapter 4 (6 ${ }^{\text {th }}$ ed.)
Many slides adapted from:
J. Kurose \& K. Ross \}

Computer Networking: A Top Down Approach (5 $5^{\text {th }}$ ed.)
Addison-Wesley, April 2009.
Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

Exercise (Kurose \& Ross, $6^{\text {th }}$ ed.)
Consider a network with 4 routers, that uses a DV routing algorithm with poisoned reverse.

- When the DV is stabilized, which
distances to x do routers w, y, z report to each other?

Exercise (Kurose \& Ross, $6^{\text {th }}$ ed.)
the link cost between x and y increases to 60 . Will there be count to infinity?

Yes, because of the spurious distance that z publishes to y : $D_{2}(x)=6$.
y will think it can get to x in cost $3+6$ and publish this to w (not to z because of poisoned reverse)
w will think it can get to x in cost $9+1$ and publish this to z (not to y because of poisoned reverse)
z will think it can get to x in cost $10+1$ and publish this to y (not to y because of poisoned reverse)
y will think it can get to x in cost $11+3$ and will publish it to w (not to z because of poisoned reverse
And so on until the distance that is published
to z is greater than 50 and z chooses to route to x directly through the edge (z, x)

