Communication Networks (0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Network Layer – Routing

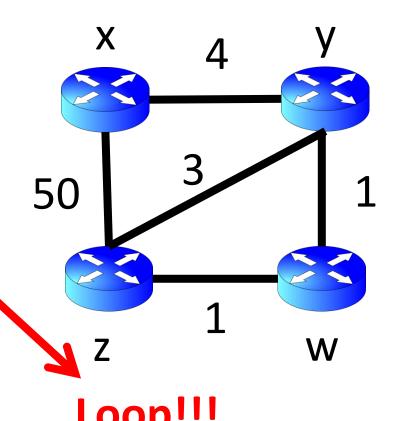
Kurose & Ross, Chapter 4 (6th ed.)

Many slides adapted from:

J. Kurose & K. Ross \

Computer Networking: A Top Down Approach (5th ed.)

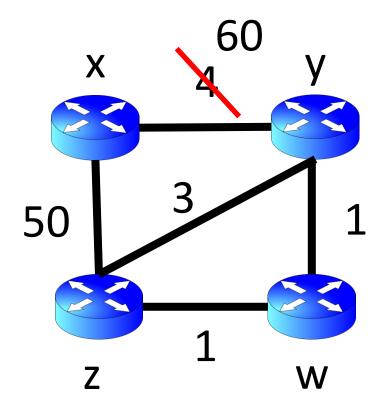
Addison-Wesley, April 2009.


Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

Exercise (Kurose & Ross, 6th ed.)

Consider a network with 4 routers, that uses a <u>DV routing algorithm</u> with poisoned reverse.

 When the DV is stabilized, which distances to x do routers w, y, z report to each other?


Router z	Informs w, $D_z(x)=\infty$
	Informs y, $D_z(x)=6$
Router w	Informs y, $D_w(x)=\infty$
	Informs z, $D_w(x)=5$
Router y	Informs w, $D_v(x)=4$
	Informs z, $D_v(x)=4$

Exercise (Kurose & Ross, 6th ed.)

The link cost between x and y increases to 60. Will there be count to infinity?

- Yes, because of the spurious distance that z publishes to y: $D_{7}(x)=6$.
- y will think it can get to x in cost 3 + 6 and publish this to w (not to z because of poisoned reverse)
- w will think it can get to x in cost 9 + 1 and publish this to z (not to y because of poisoned reverse)
- z will think it can get to x in cost 10 + 1 and publish this to y (not to y because of poisoned reverse)
- y will think it can get to x in cost 11 + 3 and will publish it to w (not to z because of poisoned reverse)
- And so on until the distance that is published to z is greater than 50 and z chooses to route to x directly through the edge (z,x)

