Communication Networks
(0368-3030) / Spring 2011
The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner
Network Layer – Forwarding

Kurose & Ross, Chapter 4 (5th ed.)

Many slides adapted from:
Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.
Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in *every* host, router
- router examines header fields in all IP datagrams passing through it
Two Key Network-Layer Functions

- **forwarding**: move packets from router’s input to appropriate router output

- **routing**: determine route taken by packets from source to dest.
 - **routing algorithms**

analogy:

- **routing**: process of planning trip from source to dest
- **forwarding**: process of getting through single interchange
Network service model

Q: What *service model* for “channel” transporting datagrams from sender to receiver?

example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:
- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing
Network layer service models:

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Guarantees?</th>
<th>Bandwidth</th>
<th>Loss</th>
<th>Order</th>
<th>Timing</th>
<th>Congestion feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no (inferred via loss)</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

IP provides best-effort service
Virtual circuits

“source-to-dest path behaves much like telephone circuit”

- performance-wise
- network actions along source-to-dest path

- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains “state” for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)
VC implementation

A VC consists of:
1. path from source to destination
2. VC numbers, one number for each link along path
3. entries in forwarding tables in routers along path

- Packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table
VC Forwarding table

Forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Routers maintain connection state information!
Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of “connection”
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths
Datagram or VC network: why?

Internet (datagram)
- data exchange among computers
 - "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- many link types
 - different characteristics
 - uniform service difficult

ATM (VC)
- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- "dumb" end systems
 - telephones
 - complexity inside network
The Internet Network layer

Host, router network layer functions:

- **Routing protocols**
 - path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - addressing conventions
 - datagram format
 - packet handling conventions

- **ICMP protocol**
 - error reporting
 - router “signaling”

Transport layer: TCP, UDP

Network layer

Link layer

physical layer
IP datagram format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ver</td>
<td>IP protocol version number</td>
</tr>
<tr>
<td>len</td>
<td>Header length (bytes)</td>
</tr>
<tr>
<td>service</td>
<td>"type" of data "type" of data</td>
</tr>
<tr>
<td>length</td>
<td>32 bits</td>
</tr>
<tr>
<td>16-bit identifier</td>
<td>Fragmentation/fragment offset</td>
</tr>
<tr>
<td>flgs</td>
<td>Time to live (decremented at each router)</td>
</tr>
<tr>
<td>offset</td>
<td>Source IP address (32 bits)</td>
</tr>
<tr>
<td>header checksum</td>
<td>Destination IP address (32 bits)</td>
</tr>
<tr>
<td>Options (if any)</td>
<td>E.g. timestamp, record route taken, specify list of routers to visit.</td>
</tr>
<tr>
<td>data</td>
<td>(variable length, typically a TCP or UDP segment)</td>
</tr>
</tbody>
</table>

IP protocol version number
- header length (bytes)
- "type" of data
 - max number remaining hops (decremented at each router)
- upper layer protocol to deliver payload to

How much overhead with TCP?
- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

Total datagram length (bytes)

Illustration:
- 32-bit header
- 16-bit identifier
- 8-bit flags
- 13-bit fragment offset
- 32-bit source IP address
- 32-bit destination IP address
- Option fields (if any)
- Data (variable length, typically a TCP or UDP segment)
Dynamic Host Configuration Protocol

- How can a newly connected host get an IP address?
 - (And other useful information: its network mask, an IP address of DNS server etc.)
 - Manual configuration by a system administrator
 - DHCP
 - Plug and play – host obtains this information automatically
 - Defined in RFCs 2131 & 2132.
 - Sent over UDP. Server’s port: 67, client’s port: 68.
 - As usual, we’ll give an overview and not go into all the technical details.
DHCP client-server scenario

DHCP server: 223.1.2.5

DHCP discover
src: 0.0.0.0, 68
dest.: 255.255.255.255,67
yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request
src: 0.0.0.0, 68
dest.: 255.255.255.255, 67
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs
DHCP client-server scenario 1

- Arriving client sends a DHCP discover message
 - Src IP: 0.0.0.0 (“this host”)
 - Dst IP: 255.255.255.255 (“broadcast”)
 - Transaction ID: some number x.
 - Message is broadcast to all nodes on the subnet
DHCP client-server scenario 2

- Server replies with a DHCP offer message
 - Src IP: server’s IP
 - Dst IP: 255.255.255.255 (“broadcast”)
 - Why? The client still can’t receive direct messages – it has no IP address.
 - Transaction ID: x
 - Message contains the proposed IP address.
DHCP client-server scenario 3

• Why aren’t the previous messages enough?
 ▫ The network might contain more than one DHCP server; a client may receive multiple DHCP offers.
• Client sends a DHCP request message
 ▫ Src IP: 0.0.0.0 (“this host”)
 ▫ Dst IP: 255.255.255.255 (“broadcast”)
 • Why? To allow other servers know their offer was declined
 ▫ DHCP Server ID: the IP of the server whose offer the client wish to accept
 ▫ Transaction ID: some number y
DHCP client-server scenario 4

- Server responds with a DHCP ACK message
 - Src IP: Server’s IP
 - Dst IP: 255.255.255.255 (“broadcast”)
 - The client still doesn’t have an IP address
 - Transaction ID: y
Lease times

- DHCP servers assigns a lease-time for each IP address allocation
 - A client may renew its allocation when it is about to expire
 - A client may relinquish its allocation
Internet Control Message Protocol

- ICMP – defined in RFC 792.
- Carried directly over IP
 - No transport protocol used
- Used by hosts and routers to communicate network layer information – usually report errors.
ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer “above” IP:
 - ICMP msgs carried in IP datagrams
- **ICMP message:** type, code plus first 8 bytes of IP datagram causing error

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>echo reply (ping)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>dest. network unreachable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>dest host unreachable</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>dest protocol unreachable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>dest port unreachable</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>dest network unknown</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>dest host unknown</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>source quench (congestion control - not used)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request (ping)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>route advertisement</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>router discovery</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>TTL expired</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>bad IP header</td>
</tr>
</tbody>
</table>
ICMP (cont.)

- For instance: “Destination unreachable”:
 - A router was unable to find a path to host B specified in host A’s request
 - The router sends an ICMP message (type 3) to A to indicate the error

- Another common use: ping
 - Host A sends an ICMP message (type 1) to host B
 - Host B sees this, and replies to A with another type 1 ICMP message.
Traceroute and ICMP

- Source sends series of UDP segments to dest
 - first has TTL = 1
 - second has TTL = 2, etc.
 - unlikely port number
- When nth datagram arrives to nth router:
 - router discards datagram
 - and sends to source an ICMP message (type 11, code 0)
 - ICMP message includes name of router & IP address
- When ICMP message arrives, source calculates RTT
- traceroute does this 3 times

Stopping criterion
- UDP segment eventually arrives at destination host
- destination returns ICMP “port unreachable” packet (type 3, code 3)
- when source gets this ICMP, stops.
IP Addressing: introduction

- **IP address**: 32-bit identifier for host or router *interface*

- *interface*: connection between host/router and physical link
 - router's typically have multiple interfaces
 - a host has typically a single interface
 - IP addresses associated with *interface*, not host, or router

```
IP Address  | Binary Representation
-------------|-----------------------
223.1.1.1    | 11011111 00000001 00000001 00000001
223.1.2.1    | 11011011 00000000 00000000 00000001
223.1.2.2    | 11011011 00000000 00000000 00000010
```

Ch. 4: Network Layer - Forwarding #25
IP Addressing

- IP address is divided into two parts:
 - network prefix
 - K high order bits
 - host number
 - remaining low order bits

- This partitioning of the address depends on the context network in which we see this NIC
 - networks are nested inside each other

Qn: What is the router’s IP address in the drawing we see?
What is a network in IP view?

IP network terminology:

- **a Subnet is:**
 - a set of devices that can physically reach each other without intervening router(s)
 - e.g. a LAN

- **a Network is:**
 - a subnet, or:
 - the union of several subnets that are interconnected by links

```
223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4
223.1.2.1
223.1.2.9
223.1.2.2
223.1.3.1
223.1.3.2
223.1.3.27
```

three subnets (LANs) 223.1.1.*, 223.1.2.*, 223.1.3.*, together they form a larger network with prefix 223.1 (16 bits) (OR MORE bits?)
IP Addresses

given notion of “network”, let’s re-examine IP addresses:
“classful” addressing:
(does not need mask or /K indicator)

class

\[
\begin{array}{c|c|c}
\text{A} & \text{network} & \text{host} \\
& 1.0.0.0 & 127.255.255.255 \\
& 128.0.0.0 & 191.255.255.255 \\
& 192.0.0.0 & 223.255.255.255 \\
& 224.0.0.0 & 239.255.255.255 \\
\text{B} & \text{10 network} & \text{host} \\
& 128.0.0.0 & 191.255.255.255 \\
& 192.0.0.0 & 223.255.255.255 \\
& 224.0.0.0 & 239.255.255.255 \\
\text{C} & \text{110 network} & \text{host} \\
& 192.0.0.0 & 223.255.255.255 \\
& 224.0.0.0 & 239.255.255.255 \\
\text{D} & \text{1110 multicast address (*)} & \text{host} \\
& 224.0.0.0 & 239.255.255.255 \\
\end{array}
\]

(*) this range used as multicast also in CIDR method

32 bits
IP addressing: CIDR

- **classful addressing:**
 - inefficient use of address space, address space exhaustion
 - e.g., class B net allocated enough addresses for 65K hosts, even if only 2K hosts in that network

- **CIDR: Classless InterDomain Routing**
 - network portion of address of arbitrary length
 - address format: `a.b.c.d/x`, where `x` is # bits in network portion of address
 - Requires inclusion of mask or “/K” in routing table

```
11001000  00010111  0001000  0  00000000
  network part  host part
200.23.16.0/23
```
Hierarchical addressing allows efficient advertisement of routing information:

Organization 0
200.23.16.0/23

Organization 1
200.23.18.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Fly-By-Night-ISP

“Send me anything with addresses beginning 200.23.16.0/20”

ISPs-R-Us

“Send me anything with addresses beginning 199.31.0.0/16”

Internet
Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Organization 0
200.23.16.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Organization 1
200.23.18.0/23

Fly-By-Night-ISP

"Send me anything with addresses beginning 200.23.16.0/20"

ISPs-R-Us

"Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23"

Internet
Print the routing table

- Windows: “route print”
- Linux: “netstat -rn”

- On nova.cs.tau.ac.il (132.67.192.133) this gives:

```
nova 2% netstat -rn
Kernel IP routing table
Destination     Gateway     Genmask      Flags MSS Window irtt Iface
132.67.192.0    0.0.0.0     255.255.255.0 U   0 0         0 eth0
0.0.0.0          132.67.192.1 0.0.0.0     UG  0 0         0 eth0
```
Exercise (Peterson & Davie, 5th ed.)

- Suppose A and B have been assigned the same IP address on the same Ethernet, on which ARP is used. B starts up after A.
 - What will happen to A’s existing connections?
 - Every device on the LAN which already has an ARP entry for A, upon receiving a packet from B, will update its ARP table and will now send to B.
 - For instance, if B transmits an ARP query (broadcast!) then all of A’s connections will be cut.
Exercise (Peterson & Davie, 5th ed.)

• Suppose A and B have been assigned the same IP address on the same Ethernet, on which ARP is used. B starts up after A.
 ▫ How can A guard against this?
 ▫ A might monitor for ARP broadcasts purportedly coming from itself.
 ▫ A might even immediately follow such broadcasts with its own ARP broadcast in order to return its traffic to itself.
Exercise (Peterson & Davie, 5th ed.)

• Suppose A and B have been assigned the same IP address on the same Ethernet, on which ARP is used. B starts up after A.
 ▫ Explain how “self-ARP” (querying the network on start-up for one’s own IP address) might help with this problem.
 ▫ If B uses self-ARP on startup, it will receive a reply indicating that its IP address is already in use
 ▫ This is a clear indication that B should not continue on the network until the issue is resolved.
Extra slides

Review of lecture, if time permits
Interplay between routing and forwarding

Routing algorithm

Local forwarding table

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header
Virtual circuits: signaling protocols

- used to setup, maintain, teardown VC
- used in ATM, frame-relay, X.25
- not used in today’s Internet
IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>
IP addressing: the last word...

Q: How does an ISP get block of addresses?
A: ICANN: Internet Corporation for Assigned Names and Numbers
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes