Communication Networks (0368-3030) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University

Allon Wagner

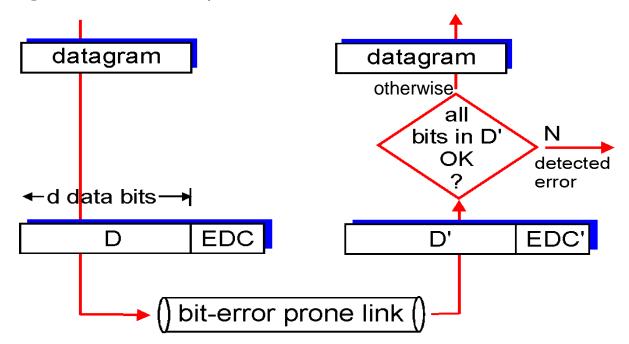
Error Detection and Correction

Kurose & Ross, Chapter 5.2 (5th ed.)

Error Detection

EDC= Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction



Example – Parity bit

- Assume D has *d* bits.
- The EDC is one bit s.t. the number of 1's in the *d+1* bits (D and the EDC) is even.
- Receiver can detect an error inverting an odd number of bits
- Example:
 - D = 11101
 - Sender sends 111010
 - Receiver gets 101010
 - Illegal parity an error has occurred
 - Receiver cannot correct the error

Error detection vs. Error correction

bit-error prone link

EDC

datagram

all

bits in D'

OK

D'

N

EDC'

detected error

datagram

←d data bits →

D

Some theory

- Assume all messages are of size d
 - We have 2^d possible messages, all of them valid
 - When some bits flip, the receiver still gets a valid message
 - It cannot know there was an error

• The proposed solution:

- Add r bits of redundancy.
- Now, we have 2^{d+r} possible messages, but only 2^d of them are valid (these are called *codewords*).
- "Small errors" are likely to transform the valid message into an invalid one, so that the receiver knows an error has occurred.

Some theory (cont.)

 <u>Definition</u>: The Hamming-distance of two strings x and y is the number of bits in which they differ, denoted dH(x,y).

For instance: x = 110010 y = 111000. dH(x,y) = 2

 <u>Definition</u>: The Hamming-distance of an errorcorrection scheme (= code) is the minimal Hamming-distance between two valid messages (= codewords).
dH(C) = min { dH(x,y) : x, y ∈ C }

Parity bit revisited

- Assume all messages have d bits.
- The valid messages (= codewords) are all the *d*+1 messages s.t their total number of 1's is even.
- The Hamming-distance of this scheme is 2.
 - No two valid codewords x,y s.t. dH(x,y) = 1
 - If dH(x,y) = 1 then either x or y has an odd number of 1's.
 - There are two valid codewords with distance 2:
 - For instance, for d = 6

x = 111100 y = 111111 → dH(x,y) = 2

Why is Hamming-distance important?

- Theorem 1: If a code C has dH(C) = k+1, then it can detect all errors of k bits or less.
 - Such errors necessarily produce an invalid codeword
- Theorem 2 : If a code C has dH(C) = 2k+1, then it can correct all errors of k bits or less.
 - Think why
- And indeed: parity bit can detect all single-bit errors, but cannot correct any.

CRC – Cyclic Redundancy Check

- Bits represent polynomials over GF(2)
 - Example: $100101 = x^5 + x^2 + 1$
 - Addition and subtraction are actually XOR (no carry)
 - Example: 1101 + 0111 = 1010 $(x^3 + x^2 + 1) + (x^2 + x + 1) = x^3 + x$
- Sender & receiver agree in advance on a generating polynomial G of degree r
- When sender wish to send *D*, it calculates *R* s.t. DR is divisible by *G*.
- When the receiver gets D'R' it divides it by G. If the remainder is not 0 – an error has occurred.

Calculating R

- $DR = x^r \cdot D + R$
- We want: $DR = x^r \cdot D + R = n \cdot G$
 - But addition and subtraction are just XOR they are interchangeable
- Equivalently, then, we want: $x^r \cdot D = n \cdot G + R$
- Namely, R is the remainder of $x^r \cdot D$ divided by G!
- Observation: *R*'s degree is at most *r*-1.
 - It is the remainder of dividing by G, and deg(G) = r

CRC Example

- D = 101110 = $x^5 + x^3 + x^2 + x$
- $G = 1001 = x^3 + 1$

 $- r = \deg(G) = 3$

• Shift *D r* bits to the left:

 $x^{r} \cdot D = x^{8} + x^{6} + x^{5} + x^{4}$

 $x^{r} \cdot D = 101110000$

• Now we can divide $x^r \cdot D$ by G:

on board

CRC Example

Want:

 $D \cdot 2^r XOR R = nG$

equivalently:

 $D \cdot 2^r = nG XOR R$

equivalently:

if we divide $D \cdot 2^r$ by G, want remainder R

R = remainder[
$$\frac{D \cdot 2^r}{G}$$
]

CRC Example (cont.)

- $D = 101110 = x^5 + x^3 + x^2 + x$
- $G = 1001 = x^3 + 1$

 $- r = \deg(G) = 3$

• Now we can divide $x^r \cdot D$ by G:

we get: R = x + 1 = 011

• Sender sends:

 $DR = x^{r} \cdot D + R = 101110011$

Ethernet's CSMA/CD

Kurose & Ross, Chapter 5.5.2 (5th ed.)

The algorithm

When a the network layer generates a new frame:

- If the adapter senses the channel to idle (that is no signal detected for 96 bit times) – start transmitting the frame
- 2. Otherwise (channel is busy) wait until you sense no signal energy (plus 96 bit times) and then start transmitting
- While transmitting listen for signal coming from other adapters. If the adapter transmitted the entire frame without detecting signal energy – it is done with the frame.
- 4. If signal energy is detected while transmitting stop transmitting the frame.
 - I. Transmit a 48 bit jam-signal
 - II. Exponential backoff:

after experiencing the *n*-th collision is a row for the current frame choose *K* randomly from $\{0, 1, ..., 2^m - 1\}$ with $m = min\{n, 10\}$. Wait K \cdot 512 bit times and return to step 1.

The jam signal

- The jam-signal makes sure all other transmitting adapters are aware of the collision
 - Suppose that A starts to transmit
 - Just before A's signal reaches B, B begins to transmit
 - B senses A's signal and aborts.
 - B transmitted just a few bits before aborting. These bits propogate to A but might not constitute enough energy for A to detect the collision!
 - To make sure A detects the collision, B transmits the 48-bit jam signal

Exponential backoff

- When an adapter first detects collision, it cannot know how many adapters are involved in the collision,
- Exponential backoff dynamically adapts the waitingtime before reattempting transmission to the number of adapters involved in the collision
 - Few adapters involved: Choose K from a small set, so that no one waits unnecessarily
 - Many adapters involved: Choose K from a large set, so everyone is likely to choose a different time to transmit, and the collision will be resolved.

Exponential backoff example

- Assume A and B both have a new frame to transmit. They both begin to transmit exactly on the same time and collide.
- They both choose *K* from {0, 1}
- The possible outcomes:

Exponential backoff example (cont.)

Case	A chooses	B chooses	Probability	Outcome
(a)	0	0	0.25	another collision on round 2
(b)	0	1	0.25	A successful on round 2, B successful on round 3
(c)	1	0	0.25	B successful on round 2, A successful on round 3
(d)	1	1	0.25	another collision on round 3

CSMA/CD - תרגיל – אורך מסגרת מינימלי ב

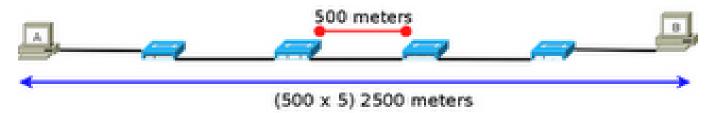
- נתונה רשת CSMA/CD עם התכונות הבאות:
 - . כבל קואקסיאלי באורך 250 מטר
 - י קצב שידור 100Mbit/sec.
 - מהירות סיגנל 200,000 ק"מ לשניה.
 - מהו אורך המסגרת המינימלי?
- L: minimal frame length
- *T*: the time it takes to transmit a frame of length *L*
- Require: $T \ge RTT$

$$T \ge 2 \cdot \frac{250}{200,000 \cdot 10^3} = 2.5 \cdot 10^{-6} s$$

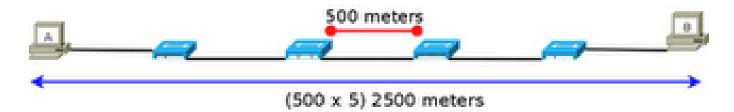
• $L \ge (100 \cdot 10^6) \cdot (2.5 \cdot 10^{-6}) = 250 \text{ bit}$

Example: Ethernet's minimal frame length

- Assume an Ethernet network with the following properties (this is quite an old network):
 - Transmission rate 10Mbps
 - Built of coaxial cables of length up to 500m
 - Up to 4 repeaters allowed
 - Signal speed on coaxial cable 200,000 km/sec
 - Every repeater adds a delay of $3\mu s$
- We show why the minimal frame length in this network is 64 bytes.



Example: Ethernet's minimal frame length



• 4 repeaters = 5 network segments

•
$$RTT = 2\left(\frac{5\cdot 500}{200,000\cdot 10^3} + 4\cdot 3\cdot 10^{-6}\right) = 4.9\cdot 10^{-5} s$$

= $49\mu s$

- $L \ge (10 \cdot 10^6) \cdot (4.9 \cdot 10^{-5}) = 490 \ bits$
- Take the next 8-power (which is both convenient and adds a margin of safety):

$$L = 512 \ bits = 64 \ bytes$$