Multiple Access Links and Protocols

Two types of "links":
- **point-to-point**
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host
- **broadcast** (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

Ideal Multiple Access Protocol
- **Broadcast channel of rate R bps**
 1. when one node wants to transmit, it can send at rate R.
 2. when M nodes want to transmit, each can send at average rate R/M.
 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
 4. simple
 - inexpensive to implement

MAC Protocols: a taxonomy
- **Channel Partitioning**
 - TDMA
 - FDMA
 - CDMA
- **Random Access**
 - ALOHA / Slotted ALOHA
 - “Taking Turns”
 - polling by a master node (e.g. Bluetooth)
 - token-passing (e.g. FDDI)
• Utilization = time spent sending packets / total time sending data
• \(P_A, P_B \) : probabilities for a successful transmission
• \(u_A, u_B \) : channel utilizations
• Let \(X, Y \) be random variables counting how many stations transmitted in networks \(A, B \) respectively.

\[P_A = P\{X = 1\} \quad P_B = P\{Y = 1\} \]

\[u_A = P_A \quad u_B = P_B \]

\[u_A, u_B \] are the same (symmetry)

• The manager of network \(B \) synchronizes his channels with network \(A \).

\[P_A = P\{X = 1\} \quad P_B = P\{Y = 0\} \]

\[u_A = P_A \quad u_B = P_B \]

\[u_A, u_B \] are the same (symmetry)

• The manager of network \(B \) didn’t agree with the solution from the previous section and increased the transmission power.

\[P_A = P\{X = 1\} \quad P_B = P\{Y = 1\} \]

\[u_A = P_A \quad u_B = P_B \]

\[u_A, u_B \] are the same (symmetry)