
ג"תשע/תשרי/ט"כ

1

Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Staff

• Lecturer: Dr. Eliezer Dor
▫ eliezer.dor @ gmail
▫ Office hours: by appointment

• Teaching Assistant: Allon Wagner
▫ allonwag @ post
▫ Office hours: Mon. 12-13 Orenstein 410, or by

appointment

• HW Grader:
▫ Michael Shifman
▫ shifman@mail.tau.ac.il

Homework

• 3 practical assignments
▫ “hands-on” network programming

▫ C / C++

• 4-5 theoretical assignments
▫ will probably include some guided-reading – bonus

points

▫ Guided-reading is considered part of the material for
the final exam

• Moodle forum for HW related questions

Requirements & Grading

• Final Exam 60%

• Practical HW assignments 20%

• Theoretical HW assignments 20%

• Submission of all the assignments is mandatory

• HW may be submitted in pairs

• There will be a closed-books final exam
▫ You may bring 4 pages (i.e. 2 two-sided sheets) with

you to the exam

Textbooks & Online Material

• Course website:
http://www.cs.tau.ac.il/~allonwag/comnet2013A/index.html

• Main textbook:
▫ Computer Networking: A Top-down Approach, by J. F.

Kurose and K. W. Ross (3rd edition or later).
• Other references:
▫ Computer Networks, by A. S. Tanenbaum (4th edition or

later).
▫ Computer Networks: A Systems Approach, by L. L. Peterson

and B. S. Davie (3rd edition or later).
▫ An Engineering Approach to Computer Networking, by S.

Keshav.
• Wikipedia, and lots of online material

Why study computer networks?

• An interface between theory (algorithms,
mathematics) and practice

• Understanding the design principles of a truly
complex system

• Industry-relevant knowledge

• Fun!

• Challenges in teaching computer networks

• Students’ feedback

http://www.cs.tau.ac.il/~allonwag/comnet2013A/index.html
http://www.cs.tau.ac.il/~allonwag/comnet2013A/index.html
http://www.cs.tau.ac.il/~allonwag/comnet2013A/index.html
http://www.cs.tau.ac.il/~allonwag/comnet2013A/index.html

ג"תשע/תשרי/ט"כ

2

Protocols

• A protocol defines:

▫ Format (Syntax)

▫ Conversation logic

▫  Finite state machine!

• Open/ proprietary

Networking is a complex task

• Solution: modularity
▫ Layering

▫ Transparency

▫ Each layer is dependent only on the interfaces defined
by the layers above and below it

▫ Each layer “talks” only to its equivalent on the remote
side

▫ Each layer is implemented by a protocol

Ch.1: Introduction 1-10

Layering

Layering Models

• OSI Reference Model
▫ 7 layers
▫ Defined by ISO (International Standards Organization)
▫ Widely used as a reference model, but seldom

implemented
• TCP/IP Reference Model
▫ 5 layers
▫ Protocols came first, the model is actually a

description of their workings.
▫ The TCP/IP suite is the backbone of today’s Internet.

Overview of the 5-layers model

• Physical layer
▫ Transmits raw bits over a communication

channel

• Data link layer
▫ Control layer over the physical layer
▫ Framing

• Network layer
▫ Delivers packets from source to

destination across the network
▫ Routing vs. Forwarding
▫ In TCP/IP: IP is the forwarding protocol

application

transport

network

data link

physical

ג"תשע/תשרי/ט"כ

3

Overview of the 5-layers model (cont.)

• Transport layer
▫ Delivers data between a program on the source

machine to a peer program on the host machine.
▫ First end-to-end layer!
▫ In TCP/IP:

 TCP: reliable, connection-oriented
 UDP: unreliable, connectionless

• Application layer
▫ A protocol (sometimes a protocol stack) to

implement the desired application service.
▫ Examples:

 Mail: SMTP, POP3, IMAP
 Remote control: Telnet
 File transfer and sharing: FTP, Bittorrent
 Instant messaging: XMPP (Jabber)

application

transport

network

data link

physical

Ch.1: Introduction

1-14

Ht Hn M packet
datagram/

source host

application
transport
network

link
physical

segment Ht M

message M

destination host

application
transport
network

link
physical

Ht Hn M

Ht M

M

network
link

physical

Ht Hn M Ht Hn M

router

Encapsulation

frame Ht Hn Hl M Tl

M – message

Ht – transport header

Hn – network header

Hl – link header

Tl – link trailer

Ht Hn Hl M Tl
Ht Hn Hl’ M Tl’

Ht Hn Hl’ M Tl’

1011………

HW Objective: Write a network application

• Design an application protocol
▫ Syntax

▫ Semantics

▫ Conversation logic

• Implement via socket programming

▫ An interface to the OS’s transport layer

Recommended References:

Beej's Guide to Network Programming

http://beej.us/guide/bgnet/

Unix Network Programming \ W. Richard Steven

Slides for this topic, as well as other topics along the course, are partly based on
the work of previous teaching assistants to this course: Hillel Avni, Yahav
Nussbaum, David Raz, Motti Sorani, Alex Kesselman.

IP Address / Domain Names

• “Uniquely” identifies a “host” on the network
▫ Not really, we’ll get to that later in the course

• A 32-bit number
▫ For convenience represented as 4 numbers in the

range 0-255

▫ e.g. 132.67.192.133

• Domain names

▫ 132.67.192.133 = nova.cs.tau.ac.il

Port

• A 16-bit number (i.e., 0-65535)

• Identifies a service on the host
▫ Again, not quite, we’ll get to that later, blah-blah.

▫ For instance: HTTP = 80, SMTP = 25, Telnet = 23

• A socket is a combination of IP + port

▫ 132.67.192.133 : 80

http://beej.us/guide/bgnet/

ג"תשע/תשרי/ט"כ

4

Port (cont.)

• The server listens on a certain port

• The client randomly chooses a port to which the
server answers

• For instance
94.127.73.5 : 1902 ↔132.67.192.133 : 80

Relevant Headers

• #include <sys/socket.h>
▫ Sockets

• #include <netinet/in.h>
▫ Internet addresses

• #include <arpa/inet.h>
▫ Working with Internet addresses

• #include <netdb.h>
▫ Domain Name Service (DNS)

• #include <errno.h>
▫ Working with errno to report errors

Address Representation

struct sockaddr {

u_short sa_family;

char sa_data[14];

};

• sa_family

▫ specifies which address family is being used

▫ determines how the remaining 14 bytes are used

Address Representation – Internet Specific

struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8]; /* unused */

};

struct in_addr {

 uint32_t s_addr;

}

• Except for sin_family, all contents are in network order

Big Endian / Little Endian

• Memory representation of multi-byte numbers:
▫ 288240001810 = ABCDEF1216

▫ Big Endian: 0xAB CD EF 12

▫ Little Endian: 0x 12 EF CD AB

• Hosts on the web use both orders

• On the network all use big endian (= network order).

• Numbers used for port number, IP etc. should thus
be converted

▫ htonl () / ntohl() / htons() / ntohs()

Reliable vs. Unreliable Sockets

SOCK_DGRAM SOCK_STREAM

unreliable transport reliable transport

connectionless connection-oriented

stateless keeps state

lightweight more resources needed

UDP TCP

ג"תשע/תשרי/ט"כ

5

Session overview

• We will start with reliable transport (TCP)

 Client TCP Server

socket()

bind()

socket() listen()

connect() ← session setup → accept()

send() data transfer → recv()

recv() ← data transfer send()

close() ←terminate session→ close()

Socket Creation – socket()

• int socket(int domain, int type, int
protocol);

• domain: PF_INET for IPv4

• type: for our purposes either SOCK_STREAM or
SOCK_DGRAM

• protocol: can be set to 0 (default protocol)

• Returns the new socket descriptor to be used in
subsequent calls, or -1 on error (and errno is set
accordingly).

• Don’t forget to close the socket when you’re done with it

Bind socket to IP and port – bind()

• int bind(int sockfd, const struct
sockaddr *my_addr, socklen_t

addrlen);

• sockfd : socket descriptor
• my_addr: address to associate with the socket
▫ The IP portion often set to INADDR_ANY which means

“local host”

• addrlen: set to sizeof(my_addr)
• Returns 0 on success, or -1 on error (and errno is set

accordingly).

Wait for an incoming call – listen()

• int listen(int sockfd, int backlog);

• sockfd : socket descriptor

• backlog: number of pending clients allowed, before
starting to refuse connections.

• Returns 0 on success, or -1 on error (and errno is set
accordingly).

Accept an incoming connection – accept()

• int accept(int sockfd, struct sockaddr
*addr, socklen_t *addrlen);

• sockfd : socket descriptor
• addr: filled in with the address of the site that's

connecting to you.
• addrlen: filled in with the sizeof() the structure returned

in the addr parameter
• Returns the newly connected socket descriptor, or -1 on

error, with errno set appropriately.
• Don’t forget to close the returned socket when you’re

done with it

Server-side example

sock = socket(PF_INET, SOCK_STREAM, 0);

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(80);
myaddr.sin_addr = htonl(INADDR_ANY);

bind(sock, &myaddr, sizeof(myaddr));

listen(sock, 5);

sin_size = sizeof(struct sockaddr_in);
new_sock = accept(sock, (struct sockaddr*)
&their_addr, &sin_size);

• In real-life code, don’t forget to check for errors

ג"תשע/תשרי/ט"כ

6

Session overview

• Reliable transport (TCP)

 Client TCP Server

socket()

bind()

socket() listen()

connect() ← session setup → accept()

send() data transfer → recv()

recv() ← data transfer send()

close() ←terminate session→ close()

Connect to a listening socket – connect()

• int connect(int sockfd, const struct
sockaddr *serv_addr, socklen_t addrlen);

• sockfd : socket descriptor
• serv_addr: the address you’re connecting to.
• addrlen: filled with sizeof(serv_addr)
• Returns 0 on success, or -1 on error (and errno is set

accordingly).

• Most of the times, no bind() is required on the client side:
▫ If bind() wasn’t called, the local IP address and a random high

port are used.

Client-side example

sock = socket(PF_INET, SOCK_STREAM, 0);

dest_addr.sin_family = AF_INET;

dest_addr.sin_port = htons(80);

dest_addr.sin_addr = htonl(0x8443FC64);

connect(sock, (struct sockaddr*)
&dest_addr, sizeof(struct sockaddr));

• In real-life, the server’s IP is not hard-coded

• In real-life code, don’t forget to check for errors

Session overview

• Once the session is
initiated, both parties are
equal:
▫ Both can send and receive

data
▫ Both can decide it’s time

to close the connection

• As long as the listening
socket is open, it can
accept new incoming
clients
▫ by calling accept()

Active Passive

socket() socket()

… bind()

… listen()

connect() accept()

Connected

close() close()

… …

… accept()

Closing a connection – close()

• int close(int sockfd);

• sockfd : socket descriptor
• returns 0 on success, or -1 on error (and errno is set

accordingly)

• After we close a socket:
▫ If the remote side calls recv(), it will return 0.
▫ If the remote side calls send(), it will receive a signal SIGPIPE and

send() will return -1 and errno will be set to EPIPE.

• shutdown() can be used to close only one side of the session
▫ Rarely used
▫ Refer to the man pages

Session overview

• Unreliable transport (UDP)

 Client UDP Server

socket()

socket() bind()

sendto() data transfer → recvfrom()

recvfrom() ← data transfer sendto()

close() close()

ג"תשע/תשרי/ט"כ

7

Sending data (TCP + UDP)

• TCP: ssize_t send(int socket, const void
*buffer, size_t length, int flags);

• UDP: ssize_t sendto(int socket, const void
*buffer, size_t length, int flags, const

struct sockaddr *dest_addr, socklen_t

dest_len);

• buffer, length: buffer of the data to send, and number of
bytes to send from it.

• flags: send options. Refer to the man pages. Use 0 for “no
options”.

• In unconnected sockets (UDP) you specify the destination in
each sendto().

Partial send

• send() and sendto() return the number of bytes
actually sent, or -1 on error (and errno is set
accordingly).

• The number of bytes actually sent might be less than
the number you asked it to send.

A code considering that
(Use it for TCP. For UDP it makes less sense – we will discuss later)

int sendall(int s, char *buf, int *len) {

 int total = 0; // how many bytes we've sent

 int bytesleft = *len; // how many we have left to send

 int n;

 while(total < *len) {

 n = send(s, buf+total, bytesleft, 0);

 if (n == -1) { break; }

 total += n;

 bytesleft -= n;

 }

 *len = total; // return number actually sent here

 return n == -1 ? -1:0; //-1 on failure, 0 on success

}

Source: Beej's Guide to Network Programming

Receiving data (TCP + UDP)

• TCP: ssize_t recv(int socket, void
*buffer, size_t length, int flags);

• UDP: ssize_t recvfrom(int socket,
void *buffer, size_t length, int

flags, struct sockaddr *from_addr,

socklen_t from_len);

• buffer, length: allocated space for the received data,
and its size (= max data received by this call)

• flags: receive options. Refer to the man pages. Use 0
for “no options”.

Receiving data (TCP + UDP) (cont.)

• recv() and recvfrom() return the number of bytes
received, or -1 if an error occurred (and errno is set
accordingly).

• In TCP sockets, 0 is returned if the remote host has
closed its connection.
▫ This is often used to determine if the remote side has

closed the connection.
• In unconnected sockets (UDP) from_addr will hold upon

return the source address of the received message.
• from_len should be initialized before the call to

sizeof(from_addr). It is modified on return to indicate the
actual size of the address stored in from_addr.

Translating a host name to an IP address

• struct hostent *gethostbyname(const char
*name);

▫ deprecated
• int getaddrinfo(const char *hostname,
const char *servname, const struct
addrinfo *hints, struct addrinfo **res);

• Supports many options and thus seems complex, but basic
use is simple.
▫ Refer to Beej’s guide for more info and for a simple example of

its use:
http://beej.us/guide/bgnet/output/html/multipage/getaddrinfo
man.html

• Don’t forget to use freeaddrinfo() to release memory when
you’re done with getaddrinfo’s result.

ג"תשע/תשרי/ט"כ

8

Other Useful Functions

• inet_ntop(), inet_pton()

▫ Convert IP addresses to human-readable text and back

• getpeername()

▫ Return address info about the remote side of the
connection.

▫ Used after calling accept() (server) or connect() (client)

• gethostname()

▫ returns the standard host name for the current
processor

Tips for defining a protocol

Binary protocols

• Uniform endianity for numbers

• String representation:

▫ Bad: decide on maximal length
hello =
0x 68 65 6C 6C 6F 00 00 00 00

▫ Better: use a length field
hello =
0x 05 00 68 65 6C 6C 6F
(note that the integer is in little
endian)

• Length field can also be applied
to fields of variable length (e.g.,
options)

An example:

• A DNS response for the query
www .icann.org:

91 73 81 80 00 01 00 01 00 00
00 00 03 77 77 77 05 69 63 61
6e 6e 03 6f 72 67 00 00 01 00
01 c0 0c 00 01 00 01 00 00 02
58 00 04 c0 00 20 07

• For instance, bytes 0-1 are
transaction ID, bytes 2-3 hold
various flags.

• Text view:

.s...........www

.icann.org.............. X.... .

Textual Protocols – An example

HTTP request for the page
http://www.ietf.org/rfc/rfc3514.txt

GET /rfc/rfc3514.txt HTTP/1.1

Host: www.ietf.org

Accept:
text/html,application/xhtml+xml,a
pplication/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-
8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

The response:

HTTP/1.1 200 OK

Date: Sun, 13 Feb 2011 14:32:45 GMT

Last-Modified: Fri, 28 Mar 2003
18:36:14 GMT

Content-Encoding: gzip

Content-Length: 4486

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/plain

Know the difference between TCP and UDP

TCP UDP

• Reliable

• Transfers a stream of data

▫ send() and recv() do not
necessarily match message
boundaries!

▫ Can receive multiple messages
together / parts of messages.

▫ The application protocol must
define a way to separate
messages within the stream.

• Affected by congestion –
avoidance mechanism etc.

• Unreliable

▫ Should consider that when
working with UDP

▫ e.g., set a timeout when
sending a query and waiting
for a response

• Transfers datagrams

Word of caution - packing

• Assume you want to have a struct represent your
protocol header (or part of it)

struct ProtocolHeader {

 unsigned short datagramLength;

 unsigned short datagramType;

 unsigned char flag;

 //...

};

http://www.ietf.org/rfc/rfc3514.txt
http://www.ietf.org/rfc/rfc3514.txt
http://www.ietf.org/rfc/rfc3514.txt

ג"תשע/תשרי/ט"כ

9

Word of caution – packing (cont.)

• Compiler may add
padding to guarantee
alignment
▫ Simply sending the struct

“as-is” is not portable

• Output:
▫ 0 4 8 16
▫ S’s size is: 24

#include <stdio.h>
#include <stddef.h>

struct S {
 short i; //2 bytes
 int j; //4 bytes
 char k; //1 byte
 double l; //8 bytes
};

int main()
{
 printf("%ld ", offsetof(S, i));
 printf("%ld ", offsetof(S, j));
 printf("%ld ", offsetof(S, k));
 printf("%ld\r\n", offsetof(S, l));
 printf("S's size is: %ld\r\n\r\n", sizeof(S));
}

Word of caution – packing (cont.)

• Possible solution:
use #pragma pack and
#pragma pop
▫ Code portability issues

• Output:
▫ 0 2 6 7
▫ T’s size is: 15

#include <stdio.h>
#include <stddef.h>

#pragma pack(push, 1)
struct T {
 short i; //2 bytes
 int j; //4 bytes
 char k; //1 byte
 double l; //8 bytes
};
#pragma pack(pop)

int main()
{
 printf("%ld ", offsetof(T, i));
 printf("%ld ", offsetof(T, j));
 printf("%ld ", offsetof(T, k));
 printf("%ld\r\n", offsetof(T, l));
 printf("T's size is: %ld\r\n\r\n", sizeof(T));
}

Handling blocking calls

Blocking function calls

• Many of the functions we saw block until a certain
event
▫ accept: until a client initiates a session
▫ connect: until the connection is (half) established
▫ recv, recvfrom: until a data is received
▫ send, sendto: until data is pushed into the socket’s buffer

• For simple programs, blocking is convenient
• What about more complex programs?
▫ multiple connections
▫ simultaneous sends and receives
▫ simultaneously doing non-networking processing

How do we handle blocking?

• Initiate multiple threads

• Do not allow blocking by the use of fcntl()

• Call a function only when it’s guaranteed not to
block

▫ select(), pselect(), poll(), ppoll()

▫ select() gets a set of fd’s and returns which of them is
 Read-ready: recv() (data socket) or accept() (listening

socket) will not block

 Write-ready: send() will not block

select()

• int select(int nfds, fd_set *readfds,
fd_set *writefds, fd_set *exceptfds,

struct timeval *timeout);

• nfds: highest-numbered file descriptor in any of the three
sets, plus 1.

• readfds, writefds, exceptfds: sets of fd’s to see if they’re
read-ready, write-ready or except-ready
▫ “Exceptional conditions” are not errors, but rather states of

the sockets (e.g. TCP’s urgent ptr is set).
▫ Any set can be replaced with NULL → the corresponding

condition will not be checked.

ג"תשע/תשרי/ט"כ

10

select() (cont.)

• Returns when at least one of the watched fd’s
becomes ready, or when the timeout expires

▫ Returns the total number of ready fd’s in all the sets.
The sets are changed to indicate which fd’s are ready.

▫ Returns 0 if timeout expired

▫ Returns -1 on error (and errno is set accordingly).

Working with fd_set

• fd_set is just a bit vector
• void FD_ZERO (fd_set *set)
▫ Initializes to an empty set

• void FD_SET (int fd, fd_set *set)
▫ Adds fd to the set

• int FD_ISSET (int fd, fd_set *set)
▫ Returns non-zero value if fd is in the set, 0 otherwise

• void FD_CLR (int fd, fd_set *set)
▫ Removes fd from the set

• stdin, stdout, stderr are associated with fd’s 0, 1, 2
respectively

select‘s timeout argument

struct timeval {

 long tv_sec; /* seconds */

 long tv_usec; /* microseconds, always less

than 10^6 */

};

• Pass (0,0) to return immediately

• Pass NULL pointer to wait indefinitely until one of
the fd’s is ready

• Some OS’s decrease the time elapsed, some don’t
▫ Linux does

select example:
reading from multiple active sockets

fd_set read_fds;

// main loop of the program

for(;;) {

 FD_ZERO(&read_fds); //reset fd set

 FD_SET(listening_sock, &read_fds);

 for(/* for each active client with fd = client_sock */) {

 FD_SET(client_sock, &read_fds);

 }

 fdmax = //… the highest fd in read_fds

 select(fdmax + 1, &read_fds, NULL, NULL, NULL);

 if (FD_ISSET(listening_sock , &read_fds)) {

 // listening socket is read-ready: a new client is available.

 // new_client_sock = accept(listening_sock, …

 }

 for(/* for each active client with fd = client_sock */) {

 if (FD_ISSET(client_sock , &read_fds)) {

 // client socket is read ready – unread data is available

 // nbytes = recv(client_sock, …

 }

} //END main program loop

