A"ywn/nav/T"

Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University Reliable Data Transfer
Kurose & Ross, Chapter 3.4 (5t ed.)

A”Oﬂ Wagner Many slides adapted from:
J. Kurose & K. Ross \
Computer Networking: A Top Down Approach (5t ed.)
Addison-Wesley, April 2009.
Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

rd+3.0 sender rdt3.0 in action

rdt_send(data)

dt_rev(revpkt) &&

\ sndpkt = make_pkt(0, data, checksum) (corrupt(revpkt) || sender receiver
\ udt_send(sndpkt) iSACK (revpkt,1 sender teceiver <ond k0 pig
rdt_rev(revpkt) | start_timer A send pkio Pg 0 o e pkid
A T g ACK send ACKO
At o dmeout ACK send ACKD fev ACKD /
call Offom udt_send(sndpkt) oy gflﬁﬂ send pit] \%‘*
send pf Dkt 55
et rev(rovpkt) start_timer i loss)
&& notcorrupt(revpkt) rdt_rev(revpkt) ok 1oV pit1
&8 ISACK(rovpkt,1) && notcorrupt(revpkt) A / send ACK]
Soptmer &8 ISACK(rcvpkt,0) send pki0: K o fimeout okt
stop_timer — K0 resend pki 1
ACK, rev pi fov pkil
- send ACKD B send ACK1
timeout TCVACK]
Udt_send(sndpkt) C: send pkiD
i rdt_rev(revpkt) send pi
start_timer (J _— () operation with no loss fev pkI0
dt 8& rdt_send(data) A send ACKD
(corrupt(revpkt) || sndpkt = make_pkt(1, data, checksum)
iSACK(revpkt,0) udt_send(sndpkt)
SACK(opO) start timer (b) lost packet
A
Transport Layer ~ 3-3 Transport Layer 3-4
sender 1ecaiver sende receiver H th
- focen Exercise (Kurose & Ross, 5t" ed.
sand pkid 0 send pki0 .
-‘\‘—-—._‘ fov kIO __’ v pki0
ACK send ACKD ~ send ACKO
'C:\QCKD] P rew ACKD < rdt 3.0is correct only under a
senapa -\H v oK1 send pil o Pkl FIFO channel assumption.
(10s5) X'n‘ik)/‘ send ACK) sand ACK1 Correct = guarantees reliable
R - transmission. Data sent by
fimeaut pkt N resend pkil - sender is exactly the data
Esend] ey OV EK U i
send . (@sfect duplicate) rcwACK] (detect dupicate) reconstructed in the receiver
— send ACK] send pkio send ACK1 side.
TCVACK] v piD
send pki0 R + Show a case where a non-FIFO
v pio X
send ACKO channel (i.e., one that can
cause packet reordering) old version of M0
causes rdt 3.0 to deliver accepted!
(c) lost ACK (d) premature timeout incorrect data g

Transport Layer 35

A"ywn/nav/T"

Toansport Layer

Exercise (Kurose & Ross, 5t ed.)

« The sender of rdt 3.0 simply ignores all received
packets that are either in error or have the wrong
value in the acknum field of an ack packet.

« Suppose that in such circumstances, rdt 3.0 were
simply to transmit the current data packet.

* Would the protocol still work?

» Would it be more or less efficient than before?

Exercise (Kurose & Ross, 5t ed.)

* Would it be more or less efficient than before?
= Depends on the length of the sender timeout,
compared to the expected channel delay.
= |If the timeout is very long, then the immediate
retransmit can save us the long wait until the timeout
expires.

= However, premature timeouts can cause a pathologies.

Performance of rdt3.0

+ rdt3.0 works, but performance stinks
« ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:
L _ 8000bits

yans =— =——5— = 8microseconds
R 10°bps

= U gnder: Utilization - fraction of time sender busy sending

= L/R _ 008 00027

U = =
sender RTT+L/R 30008

if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link

network protocol limits use of physical resources!

Transport Layer 311

Exercise (Kurose & Ross, 5t ed.)

* Would the protocol still work?
= Yes. A retransmission is exactly what would happen if
the ack was completely lost instead of garbled.
= The receiver can’t even distinguish between the two
events.

Exercise (Kurose & Ross, 5t ed.)

+ Would it be more or less efficient than before?

= In the original rdt 3.0, once an ack for a data packet is received, it can
no longer cause retransmissions.

= Assume the following scenario:
« Packet 1is sent.
+ Sender has a premature timeout. One extra copy of packet 1 is sent.
* Receiver gets 2 copies and acks each of them. The 2" ack is garbled.
* This causes a retransmission of the current sender data packet (packet

2). Packet 2 was thus also sent twice.

* The 2" ack for packet 2 was garbled. Thus, packet 3 is also sent twice.
* Andsoon...

= Every data packet was sent twice even though no data packet was
garbled and only one premature timeout occurred!

= Original rdt 3.0 would have sent only packet 1 twice (due to the
premature timeout).

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0—fss-------------=----=-=---=----|
last packet bit transmitted, t = L / R’

RTT!

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send nenl
packet, t=RTT +L/R

___L/R___ 008

U = = = 0.00027
sender” poT . L/R 30008

Transport Layer 3-12

A"ywn/nav/T"

Pipelined protocols

pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
* range of sequence numbers must be increased
= buffering at sender and/or receiver

@) @ stop-and-wait protecal in opsration (b) @ pipslined prolocal in aperafion

« two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-13

Pipelined Protocols

Go-back-N: big picture: Selective Repeat: big pic

+ sender can have up fo + sender can have up to
N unacked packets in N unack'ed packets in

pipeline pipeline
« revr only sends « revr sends /ndividual
cumulative acks ack for each packet
» doesn't ack packet if « sender maintains timer
there's a gap for each unacked
+ sender has timer for packet

oldest unacked packet
= if timer expires,
refransmit all unack'ed
packets

= when timer expires,
refransmit only
unack'ed packet

Transport Layer 3-15

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
= make_| data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum+-+
)
A else
fowwery refuse_data(data)

nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

: timeout
start_timer
udt_send(sndpkt[base])

G U udt_send(sndpkt[base+1])

udt_send(sndpkt{nextseqnum-1])

rdt_rev(revpkt) &&
notcorrupt(rcvpkt)
base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer
- Transport Layer 317

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = O
last bit transmitted, t=L/R

|
’ first packet bit arrives
RTT! last packet bit arrives, send ACK
last bit of 2" packet arrives, send ACK
last bit of 3" packet arrives, send ACK

ACK arrives, send nexl
packet, t = RTT + L/ R [3>

>

Increase utilization
/ by a factor of 3!

V] = M = E = 0.0008
sender RTT+L/R 30.008

Transport Layer 3-14

Go-Back-N

Sender:
« k-bit seq # in pkt header
+ “window" of up to N, consecutive unack'ed pkts allowed

senhd_base nextseqgnum dlready usalble, not
ack'ed yet sent

T | e
window size —%
N

= ACK(n): ACKs all pkts up to, including seq # n - “"cumulative ACK"
= may receive duplicate ACKs (see receiver)

+ timer for each in-flight pkt

s timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-16

GBN: receiver extended FSM

default

udt_send(sndpkt) dit_rov(rovpkt)
~~~~~ && noteurrupt(rcvpkt)

A Te-al &
expectedsegnum=1 \)exlract(rcvpkt,data)
sndpkt = deliver_data(data)

make_pkt(expectedseqnum ACK chksum)  sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
= may generate duplicate ACKs
= need only remember expectedseqnum
« out-of-order pkt:
= discard (don't buffer) -> no receiver buffering!
= Re-ACK pkt with highest in-order seq #

Transport Layer  3-18



A"ywn/nav/T"

. sender receiver
GBN in — -
— endpk0 —_
rev pki0
action send pktl sengACKD
rcv pkil
send pki2 -____Elﬁss ser?d ACK]
send pkt3
(wait) rov pktd, discard
/ send ACKI
rev ACKOD
send pkt4
rcv pkid, discard
;ecdigHKé \ sond ACK]
kib, d d
pki2 timeout ¥ rscevr']g ACKW‘SCGI

send pki2 \\\’
send pkt3 \ rev pki2, deliver

send pktd send ACK2
send pkts rev pkt3, deliver
\ send ACK3

Transport Layer  3-19

Selective repeat: sender, receiver windows

send base  nextsegnum

already usable, not
T ack'ed yet sent
D000 CELCHRARATLN0N00ND | sevtogtag ] e
£ wihdow sze—%
N

(o) sender view of sequence numbers

out of order acceptable
(buffered) but I (within windew)
dlready ack’'ed

J000O0NOUERPERDECTIEIIOOD  oseststamet oot
yet received

;— window size—4
N

rev_base
(b) receiver view of sequence nurnbers

Transport Layer 3-21

Selective repeat in action

pkt0 sent

Dazafeseres Ty 0 rovd, detivered, 400 sont

. ACKL sent

pkt2 sent

[T123]ase709 0

(loss)

22 nt. window full

[t12s]aseres

pkt3 rovd, buffered, ACK3 sent

o1fzsaslsres

ACKD rcvd, pktd sent
oftzz4lceras

DktS sent

[BEERT R

pkt2 TIMEOUT. pkt2 resent

oifzzasls 78

pkt4 rcvd, buffered, ACK4 sent

Pkt rcvd, buffered, ACKS sent
01fz 6789

pkt2 rovd, pkt2,pkt3.pktd, pkts
deliversd, ACK2 ssnt

012345F7839]

ACK3 rcvd, nothing sent

c1zzags 780

sport Layer 323

Selective Repeat

« receiver /ndividually acknowledges all correctly

received pkts

= buffers pkts, as needed, for eventual in-order delivery

to upper layer

+ sender only resends pkts for which ACK not

received

= sender timer for each unACKed pkt

% sender window
= N consecutive seq #'s

= again limits seq #s of sent, unACK'ed pkts

Selective repeat

—sender——
data from above :
+ if next available seq # in

window, send pkt

timeout(n):
« resend pkt n, restart timer
ACK(I’\) in [sendbase sendbase+N]:
« mark pkt n as received

¢ if n smallest unACKed pkt,
advance window base to
next unACKed seq #

Transport Layer  3-20

— receiver
PkT N iN [rcvbase, revbase+N-1]
« send ACK(n)
« out-of-order: buffer
+ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt
pkf N in [rcvbase-N revbase-1]
% ACK(n)
otherwise:
% ignore

sender window

Selective repeat: e

dilemma

Example:
« seq#s:0,1,2,3
% window size=3

+ receiver sees no
difference in two
scenarios!

% incorrectly passes
duplicate data as new

in (a)

Q: what relationship
between seq # size
and window size?

timeout

sender window
(after receipt )

Transport Layer 3-22

receiver window
after receipt)

mit phig
P . receive packet

with seq number O

(a)

receiver window
(after receipt)

oo 1 2

receive packet
with seq number 0

©)

Transport Layer  3-24.



A"ywn/nav/T"

Toansport Layer

Minimal sequence range

« Assume we want to use a sender window of size N.

* What is the minimal number of unique sequence
numbers we should allow to prevent such errors?

« The cyclic sequence number should never cause the
sender and receiver’s window to ambiguously
overlap

* In FIFO channels:

s GBN: N +1
s SR: 2N
= Proof: on-board

Exercise (Kurose & Ross, 5t ed.)

Are the following statements true or false?

With SR, it is possible for the sender to receive an ACK for a packet that
falls outside of its current window.

True. Suppose sender has a window size of 3.

Time ty: it sends packets 1, 2, 3.

Time t; > ty: receiver acks 1, 2, 3.

Time t; > t;: sender times out and retransmits 1, 2, 3.

Time t3 > t,: receiver gets the duplicates and reacks 1, 2, 3.

Time t, > t3: sender gets the ack sent at t;, advances its window to 4, 5, 6.
Time t5 > t,: sender receives the acks sent at t;, that fall outside of its current
window.

With GBN, it is possible for the sender to receive an ACK for a packet that
falls outside of its current window.

True, with the same scenario as described above. Only need to replace the
selective acks with cumulative acks.

Exercise

Recall the GBN receiver: assume it is waiting for packet m (i.e., it received
correctly all the packets up to m — 1 inclusive).
> When a data packet with sequence n = m is received, the receiver accepts it
and advances its window.
» Whenever a data packet with sequence n # m is received, the receiver
discards it and resends ack m (“I am still waiting for m”).
Assume a FIFO channel and an infinite sequence number. Does the
protocol remain correct if we perform the following changes?
If n < m the receiver discards the packet and does not send an ack.
Otherwise, operate as before.
Incorrect. Let the sender send packets 1, ..., m — 1. All received correctly,
but all acks are lost.
= The receiver waits for packet m.
= But whenever the sender times-out expires, it resends packets 1,...,m — 1.
» Receiver discards them and does not ack.
> Deadlock.

Minimal sequence range (cont.)

¢ In non-FIFO channel, this cannot be guaranteed!
= We assume that in realistic channels, old packets are
cleared from the network after a reasonable time, so
accidental overlap does not occur of the range of
sequence numbers is “big enough”.

Exercise (Kurose & Ross, 5t ed.)

« Are the following statements true or false?

rdt 3.0 is the same as SR with a sender and receiver

window size of 1.

rdt 3.0 is the same as GBN with a sender and receiver

window size of 1.

Both are true. With a window size of 1, SR, GBN, and the

rtd 3.0 are functionally equivalent.

= The window size of 1 precludes the possibility of out-of-
order packets (within the window).

= A cumulative ACK is just an ordinary ACK in this situation,

since it can only refer to the single packet within the
window.

Exercise

e ifn > m, the receiver discards the packet and does
not send an ack. Otherwise, operate as before.

« Correct. If n > m was received, but the receiver is
waiting for m, it means we have a gap. The sender
will eventually timeout for m, and resend packet n
then.



