
ב"תשע/טבת/ד"י

1

Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Kurose & Ross, Chapter 3.4 (5th ed.)

Many slides adapted from:

J. Kurose & K. Ross \
Computer Networking: A Top Down Approach (5th ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

Transport Layer 3-3

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

Transport Layer 3-4

rdt3.0 in action

Transport Layer 3-5

rdt3.0 in action

Exercise (Kurose & Ross, 5th ed.)

• rdt 3.0 is correct only under a
FIFO channel assumption.

▫ Correct = guarantees reliable
transmission. Data sent by
sender is exactly the data
reconstructed in the receiver
side.

• Show a case where a non-FIFO
channel (i.e., one that can
cause packet reordering)
causes rdt 3.0 to deliver
incorrect data.

ב"תשע/טבת/ד"י

2

Exercise (Kurose & Ross, 5th ed.)

• The sender of rdt 3.0 simply ignores all received
packets that are either in error or have the wrong
value in the acknum field of an ack packet.

• Suppose that in such circumstances, rdt 3.0 were
simply to transmit the current data packet.

• Would the protocol still work?

• Would it be more or less efficient than before?

Transport Layer

3-7

Exercise (Kurose & Ross, 5th ed.)

• Would the protocol still work?

▫ Yes. A retransmission is exactly what would happen if
the ack was completely lost instead of garbled.

▫ The receiver can’t even distinguish between the two
events.

Exercise (Kurose & Ross, 5th ed.)

• Would it be more or less efficient than before?
▫ Depends on the length of the sender timeout,

compared to the expected channel delay.

▫ If the timeout is very long, then the immediate
retransmit can save us the long wait until the timeout
expires.

▫ However, premature timeouts can cause a pathologies.

Exercise (Kurose & Ross, 5th ed.)

• Would it be more or less efficient than before?
▫ In the original rdt 3.0, once an ack for a data packet is received, it can

no longer cause retransmissions.
▫ Assume the following scenario:

 Packet 1 is sent.
 Sender has a premature timeout. One extra copy of packet 1 is sent.
 Receiver gets 2 copies and acks each of them. The 2nd ack is garbled.
 This causes a retransmission of the current sender data packet (packet

2). Packet 2 was thus also sent twice.
 The 2nd ack for packet 2 was garbled. Thus, packet 3 is also sent twice.
 And so on…

▫ Every data packet was sent twice even though no data packet was
garbled and only one premature timeout occurred!

▫ Original rdt 3.0 would have sent only packet 1 twice (due to the
premature timeout).

Transport Layer 3-11

Performance of rdt3.0

 rdt3.0 works, but performance stinks

 ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U
sender

=
.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

 if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link

 network protocol limits use of physical resources!

dsmicrosecon8
bps10

bits8000
9

R

L
dtrans

Transport Layer 3-12

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

ב"תשע/טבת/ד"י

3

Transport Layer 3-13

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
 range of sequence numbers must be increased

 buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-14

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK

last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

ds

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

Transport Layer 3-15

Pipelined Protocols

Go-back-N: big picture:
 sender can have up to

N unacked packets in
pipeline

 rcvr only sends
cumulative acks
 doesn’t ack packet if

there’s a gap

 sender has timer for
oldest unacked packet
 if timer expires,

retransmit all unack’ed
packets

Selective Repeat: big pic
 sender can have up to

N unack’ed packets in
pipeline

 rcvr sends individual
ack for each packet

 sender maintains timer
for each unacked
packet
 when timer expires,

retransmit only
unack’ed packet

Transport Layer 3-16

Go-Back-N
Sender:
 k-bit seq # in pkt header

 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt

 timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-17

GBN: sender extended FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

 udt_send(sndpkt[nextseqnum])

 if (base == nextseqnum)

 start_timer

 nextseqnum++

 }

else

 refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

 stop_timer

 else

 start_timer

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

 && corrupt(rcvpkt)

L

Transport Layer 3-18

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
 may generate duplicate ACKs

 need only remember expectedseqnum

 out-of-order pkt:
 discard (don’t buffer) -> no receiver buffering!

 Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

 rdt_rcv(rcvpkt)

 && notcurrupt(rcvpkt)

 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

 make_pkt(expectedseqnum,ACK,chksum)

L

ב"תשע/טבת/ד"י

4

Transport Layer 3-19

GBN in
action

Transport Layer 3-20

Selective Repeat

 receiver individually acknowledges all correctly
received pkts
 buffers pkts, as needed, for eventual in-order delivery

to upper layer

 sender only resends pkts for which ACK not
received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #’s

 again limits seq #s of sent, unACK’ed pkts

Transport Layer 3-21

Selective repeat: sender, receiver windows

Transport Layer 3-22

Selective repeat

data from above :
 if next available seq # in

window, send pkt

timeout(n):
 resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender

pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore

receiver

Transport Layer 3-23

Selective repeat in action

Transport Layer 3-24

Selective repeat:
 dilemma

Example:
 seq #’s: 0, 1, 2, 3

 window size=3

 receiver sees no

difference in two
scenarios!

 incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

ב"תשע/טבת/ד"י

5

Minimal sequence range

• Assume we want to use a sender window of size 𝑁.
• What is the minimal number of unique sequence

numbers we should allow to prevent such errors?
• The cyclic sequence number should never cause the

sender and receiver’s window to ambiguously
overlap

• In FIFO channels:
▫ GBN: 𝑁 + 1
▫ SR: 2𝑁
▫ Proof: on-board

Transport Layer

3-25

Minimal sequence range (cont.)

• In non-FIFO channel, this cannot be guaranteed!

▫ We assume that in realistic channels, old packets are
cleared from the network after a reasonable time, so
accidental overlap does not occur of the range of
sequence numbers is “big enough”.

Exercise (Kurose & Ross, 5th ed.)
• Are the following statements true or false?
• With SR, it is possible for the sender to receive an ACK for a packet that

falls outside of its current window.
• True. Suppose sender has a window size of 3.

▫ Time 𝑡0: it sends packets 1, 2, 3.
▫ Time 𝑡1 > 𝑡0: receiver acks 1, 2, 3.
▫ Time 𝑡2 > 𝑡1: sender times out and retransmits 1, 2, 3.
▫ Time 𝑡3 > 𝑡2: receiver gets the duplicates and reacks 1, 2, 3.
▫ Time 𝑡4 > 𝑡3: sender gets the ack sent at 𝑡1, advances its window to 4, 5, 6.
▫ Time 𝑡5 > 𝑡4: sender receives the acks sent at 𝑡2, that fall outside of its current

window.
• With GBN, it is possible for the sender to receive an ACK for a packet that

falls outside of its current window.
• True, with the same scenario as described above. Only need to replace the

selective acks with cumulative acks.

Exercise (Kurose & Ross, 5th ed.)

• Are the following statements true or false?
• rdt 3.0 is the same as SR with a sender and receiver

window size of 1.
• rdt 3.0 is the same as GBN with a sender and receiver

window size of 1.
• Both are true. With a window size of 1, SR, GBN, and the

rtd 3.0 are functionally equivalent.
▫ The window size of 1 precludes the possibility of out-of-

order packets (within the window).
▫ A cumulative ACK is just an ordinary ACK in this situation,

since it can only refer to the single packet within the
window.

Exercise
• Recall the GBN receiver: assume it is waiting for packet 𝑚 (i.e., it received

correctly all the packets up to 𝑚 − 1 inclusive).
▫ When a data packet with sequence 𝑛 = 𝑚 is received, the receiver accepts it

and advances its window.
▫ Whenever a data packet with sequence 𝑛 ≠ 𝑚 is received, the receiver

discards it and resends ack 𝑚 (“I am still waiting for 𝑚”).
• Assume a FIFO channel and an infinite sequence number. Does the

protocol remain correct if we perform the following changes?
• If 𝑛 < 𝑚 the receiver discards the packet and does not send an ack.

Otherwise, operate as before.
• Incorrect. Let the sender send packets 1, … , 𝑚 − 1. All received correctly,

but all acks are lost.
▫ The receiver waits for packet 𝑚.
▫ But whenever the sender times-out expires, it resends packets 1, … , 𝑚 − 1.
▫ Receiver discards them and does not ack.
▫ Deadlock.

Exercise

• if 𝑛 > 𝑚, the receiver discards the packet and does
not send an ack. Otherwise, operate as before.

• Correct. If 𝑛 > 𝑚 was received, but the receiver is
waiting for 𝑚, it means we have a gap. The sender
will eventually timeout for 𝑚, and resend packet 𝑛
then.

