
Communication Networks 
(0368-3030) / Spring 2011 

The Blavatnik School of Computer Science,  
Tel-Aviv University 

 

Allon Wagner 



Kurose & Ross, Chapter 5.2 (5th ed.) 
 

 



Data Link Layer 5-3 

Error Detection 
EDC= Error Detection and Correction bits (redundancy) 
D    = Data protected by error checking, may include header fields  
 
• Error detection not 100% reliable! 

• protocol may miss some errors, but rarely 
• larger EDC field yields better detection and correction 

otherwise 



Example – Parity bit 

• Assume D has d bits. 
• The EDC is one bit s.t. the 

number of 1’s in the d+1 bits (D 
and the EDC) is even. 

• Receiver can detect an error 
inverting an odd number of bits 

• Example: 
▫ D = 11101 
▫ Sender sends 111010 
▫ Receiver gets  101010 
▫ Illegal parity – an error has 

occurred 
▫ Receiver cannot correct the 

error  

Error detection vs.  
Error correction 



Some theory 

• Assume all messages are of size d 
▫ We have 2d possible messages, all of them valid 
▫ When some bits flip, the receiver still gets a valid message 
▫ It cannot know there was an error 

• The proposed solution: 
▫ Add r bits of redundancy . 
▫ Now, we have 2d+r possible messages, but only 2d of them 

are valid (these are called codewords). 
▫ “Small errors” are likely to transform the valid message into 

an invalid one, so that the receiver knows an error has 
occurred. 



Some theory (cont.) 

• Definition: The Hamming-distance of two strings x 
and y is the number of bits in which they differ, 
denoted dH(x,y). 
▫ For instance: x = 110010 y = 111000. dH(x,y) = 2 

•  Definition: The Hamming-distance of an error-
correction scheme ( = code) is the minimal 
Hamming-distance between two valid messages ( = 
codewords). 
dH(C) = min { dH(x,y) : x, y ϵ C } 



Parity bit revisited 

• Assume all messages have d bits. 

• The valid messages ( = codewords) are all the d+1 
messages s.t their total number of 1’s is even. 

• The Hamming-distance of this scheme is 2. 
▫ No two valid codewords x,y s.t. dH(x,y) = 1 

 If dH(x,y) = 1 then either x or y has an odd number of 1’s. 

▫ There are two valid codewords with distance 2: 
 For instance, for d = 6 

x = 111100 y = 111111  dH(x,y) = 2 



Why is Hamming-distance important? 

• Theorem 1: If a code C has dH(C) = k+1, then it can 
detect all errors of k bits or less. 
▫ Such errors necessarily produce an invalid codeword 

•  Theorem 2 : If a code C has dH(C) = 2k+1, then it can 
correct all errors of k bits or less. 
▫ Think why 

• And indeed: parity bit can detect all single-bit errors, 
but cannot correct any. 



CRC – Cyclic Redundancy Check 

• Bits represent polynomials over GF(2) 
▫ Example: 100101 = x5 + x2 + 1 
▫ Addition and subtraction are actually XOR (no carry) 
▫ Example: 1101 + 0111 = 1010 

(x3 + x2 + 1) + (x2 + x + 1) = x3 + x 

• Sender & receiver agree in advance on a generating 
polynomial G of degree r 

• When sender wish to send D, it calculates R s.t. DR is 
divisible by G. 

• When the receiver gets D’R’ it divides it by G. If the 
remainder is not 0 – an error has occurred. 



Calculating R 

• DR = xr ∙ D + R 

• We want: DR = xr ∙ D + R = n ∙ G  
▫ But addition and subtraction are just XOR – they are 

interchangeable 

• Equivalently, then, we want: xr ∙ D = n ∙ G + R 

• Namely, R is the remainder of xr ∙ D divided by G! 

• Observation: R’s degree is at most r-1. 
▫ It is the remainder of dividing by G, and deg(G) = r 



CRC Example 

• D = 101110 = x5 + x3 + x2 + x 

• G = 1001 = x3 + 1 
▫ r = deg(G) = 3 

• Shift D r bits to the left: 
▫ xr ∙ D = x8 + x6 + x5 + x4 

▫ xr ∙ D = 101110000 

• Now we can divide xr ∙ D by G: 

▫ on board 



Data Link Layer 5-12 

CRC Example 

Want: 

D.2r XOR R = nG 

equivalently: 

D.2r = nG XOR R  

equivalently:   
    if we divide D.2r by 

G, want remainder R 

R = remainder[           ] 
D.2r 

G 



CRC Example (cont.) 

• D = 101110 = x5 + x3 + x2 + x 

• G = 1001 = x3 + 1 
▫ r = deg(G) = 3 

• Now we can divide xr ∙ D by G: 
▫ we  get: R = x + 1 = 011 

• Sender sends: 
▫ DR = xr ∙ D + R = 101110011 
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The algorithm 

When a the network layer generates a new frame: 
1. If the adapter senses the channel to idle (that is no signal 

detected for 96 bit times) – start transmitting the frame 
2. Otherwise (channel is busy) – wait until you sense no signal 

energy (plus 96 bit times) and then start transmitting 
3. While transmitting – listen for signal coming from other adapters. 

If the adapter transmitted the entire frame without detecting 
signal energy – it is done with the frame. 

4. If signal energy is detected while transmitting – stop transmitting 
the frame. 

I. Transmit a 48 bit jam-signal 
II. Exponential backoff: 

after experiencing the n-th collision is a row for the current frame 
choose K randomly from {0, 1, …, 2m – 1} with m = min{ n, 10 }. 
Wait K ∙ 512 bit times and return to step 1. 

 



The jam signal 

• The jam-signal makes sure all other transmitting 
adapters are aware of the collision 
▫ Suppose that A starts to transmit 

▫ Just before A’s signal reaches B, B begins to transmit 

▫ B senses A’s signal and aborts. 

▫ B transmitted just a few bits before aborting. These 
bits propogate to A but might not constitute enough 
energy for A to detect the collision! 

▫ To make sure A detects the collision, B transmits the 
48-bit jam signal 



Exponential backoff 

• When an adapter first detects collision, it cannot 
know how many adapters are involved in the 
collision, 

• Exponential backoff dynamically adapts the waiting-
time before reattempting transmission to the 
number of adapters involved in the collision 
▫ Few adapters involved: Choose K from a small set, so 

that no one waits unnecessarily 
▫ Many adapters involved: Choose K from a large set, so 

everyone is likely to choose a different time to 
transmit, and the collision will be resolved. 



Exponential backoff example 

• Assume A and B both have a new frame to transmit. 
They both begin to transmit exactly on the same 
time and collide. 

• They both choose K from {0, 1} 

• The possible outcomes: 



Exponential backoff example (cont.) 

Outcome Probability B chooses A chooses Case 

another collision on round 2 0.25 0 0 (a) 

A successful on round 2,  
B successful on round 3 

0.25 

 

1 0 (b) 

B successful on round 2,  
A successful on round 3 

 

0.25 

 

0 1 (c) 

another collision on round 3 0.25 

 

1 1 (d) 



 CSMA/CD -ב  מינימליאורך מסגרת  –תרגיל 

 :עם התכונות הבאות CSMA/CDנתונה רשת •
 .מטר 250כבל קואקסיאלי באורך ▫

 .100Mbit/secקצב שידור ▫

 .לשניהמ "ק 200,000מהירות סיגנל ▫

 ?מהו אורך המסגרת המינימלי•
• 𝐿: minimal frame length  
• 𝑇: the time it takes to transmit a frame of length 𝐿 
• Require: 𝑇 ≥ 𝑅𝑇𝑇 

𝑇 ≥ 2 ⋅
250

200,000 ⋅ 103
= 2.5 ⋅ 10−6 𝑠 

• 𝐿 ≥ 100 ⋅ 106 ⋅ 2.5 ⋅ 10−6 = 250 𝑏𝑖𝑡 
 



Example: Ethernet’s minimal frame length 

• Assume an Ethernet network with the following 
properties (this is quite an old network): 
▫ Transmission rate 10Mbps 
▫ Built of coaxial cables of length up to 500m 
▫ Up to 4 repeaters allowed 
▫ Signal speed on coaxial cable 200,000 km/sec 
▫ Every repeater adds a delay of 3𝜇𝑠 

• We show why the minimal frame length in this network 
is 64 bytes. 

 



Example: Ethernet’s minimal frame length 

• 4 repeaters = 5 network segments 

• 𝑅𝑇𝑇 = 2
5⋅500

200,000⋅103 + 4 ⋅ 3 ⋅ 10−6 = 4.9 ⋅ 10−5 𝑠

= 49𝜇𝑠 

• 𝐿 ≥ 10 ⋅ 106 ⋅ 4.9 ⋅ 10−5 = 490 𝑏𝑖𝑡𝑠 

• Take the next 8-power (which is both convenient and 
adds a margin of safety): 

𝐿 = 512 𝑏𝑖𝑡𝑠 = 64 𝑏𝑦𝑡𝑒𝑠 


