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Error Detection and Correction
Kurose & Ross, Chapter 5.2 (5% ed.)



Error Detection

EDC= Error Detection and Correction bits (redundancy)
D = Data protected by error checking, may include header fields

* Error detection not 100% reliablel
* protocol may miss some errors, but rarely
* larger EDC field yields better detection and correction
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Example — Parity bit

_ I
 Assume D has d bits. datagram | [ datagram |

» The EDC is one bit s.t. the Y)
number of 1’s in the d+1 bits (D
and the EDC) is even.

bits in D'
OK
?

—_—
detected

error

* Receiver can detect an error «d data bits—| X
inverting an odd number of bits [—1);@' D EoC |
* Example: J
° D=11101 — () bit-error prone link ||

s Sender sends 111010

o Receiver gets 101010

= |llegal parity — an error has '
occurred Error detection vs.

= Receiver cannot correct the Error correction
error



Some theory

» Assume all messages are of size d
= We have 29 possible messages, all of them valid
= When some bits flip, the receiver still gets a valid message
o |t cannot know there was an error
» The proposed solution:
= Add r bits of redundancy .

= Now, we have 29" possible messages, but only 29 of them
are valid (these are called codewords).

= “Small errors” are likely to transform the valid message into
an invalid one, so that the receiver knows an error has
occurred.



Some theory (cont.)

* Definition: The Hamming-distance of two strings x
and y is the number of bits in which they differ,
denoted dH(x,y).
= For instance: x = 110010y = 111000. dH(x,y) = 2

* Definition: The Hamming-distance of an error-
correction scheme ( = code) is the minimal
Hamming-distance between two valid messages ( =
codewords).
dH(C) = min { dH(x,y) : x, y e C}




Parity bit revisited

* Assume all messages have d bits.

» The valid messages ( = codewords) are all the d+1
messages s.t their total number of 1’s is even.

* The Hamming-distance of this scheme is 2.
= No two valid codewords x,y s.t. dH(x,y) =1
* If dH(x,y) = 1 then either x or y has an odd number of 1’s.
= There are two valid codewords with distance 2:

* For instance, ford =6
x=111100y =111111 - dH(x,y) =2



Why is Hamming-distance important?

 Theorem 1: If a code C has dH(C) = k+1, then it can
detect all errors of k bits or less.
= Such errors necessarily produce an invalid codeword

 Theorem 2 : If a code C has dH(C) = 2k+1, then it can
correct all errors of k bits or less.

o Think why

* And indeed: parity bit can detect all single-bit errors,
but cannot correct any.



CRC — Cyclic Redundancy Check

* Bits represent polynomials over GF(2)
s Example: 100101 = x>+ x2+ 1
= Addition and subtraction are actually XOR (no carry)
= Example: 1101 + 0111 = 1010

(X3+x2+ 1)+ (X?+x+1)=x3+x

» Sender & receiver agree in advance on a generating
polynomial G of degree r

« When sender wish to send D, it calculates R s.t. DR is
divisible by G.

* When the receiver gets D’R’ it divides it by G. If the
remainder is not 0 — an error has occurred.



Calculating R

e DR=x"-D+R
e Wewant: DR=x"-D+R=n-G
= But addition and subtraction are just XOR — they are
interchangeable

* Equivalently, then, we want: x"-D=n-G+R
 Namely, R is the remainder of x" - D divided by G!

» Observation: R’s degree is at most r-1.
= |t is the remainder of dividing by G, and deg(G) = r



CRC Example

e D=101110=x>+x3+ x? + X
«G=1001=x3+1
o r=deg(G) =3
 Shift D r bits to the left:
o X' -D=x8+x0+x>+ x4
o x"-D=101110000
* Now we can divide x" - D by G:
= on board



CRC Example

Want:

D-2" XORR = nG
equivalently:

D-2" = nG XOR R
equivalently:

if we divide D-2" by
G, want remainder R

D-2r ]
G

R = remainder][

101011
1001101110000
1001 >D
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CRC Example (cont.)

e D=101110=x>+x3 + X% + X
«G=1001=x3+1
o r=deg(G) =3
* Now we can divide x" - D by G:
o we get: R=x+1=011
» Sender sends:
= DR=x"-D+R=101110011



Ethernet’s CSMA/CD

Kurose & Ross, Chapter 5.5.2 (5% ed.)



The algorithm

When a the network layer generates a new frame:

1. If the adapter senses the channel to idle (that is no signal
detected for 96 bit times) — start transmitting the frame

2. Otherwise (channel is busy) — wait until you sense no signal
energy (plus 96 bit times) and then start transmitting

3.  While transmitting — listen for signal coming from other adapters.
If the adapter transmitted the entire frame without detecting
signal energy — it is done with the frame.

4. If signal energy is detected while transmitting — stop transmitting
the frame.

. Transmit a 48 bit jam-signal

Il.  Exponential backoff:
after experiencing the n-th collision is a row for the current frame
choose K randomly from {0, 1, ..., 2™ — 1} with m =min{ n, 10 }.
Wait K - 512 bit times and return to step 1.



The jam signal

* The jam-signal makes sure all other transmitting
adapters are aware of the collision
o Suppose that A starts to transmit
= Just before A’s signal reaches B, B begins to transmit
= B senses A’s signal and aborts.

= B transmitted just a few bits before aborting. These
bits propogate to A but might not constitute enough
energy for A to detect the collision!

= To make sure A detects the collision, B transmits the
48-bit jam signal



Exponential backoff

 When an adapter first detects collision, it cannot
know how many adapters are involved in the
collision,

* Exponential backoff dynamically adapts the waiting-
time before reattempting transmission to the
number of adapters involved in the collision
= Few adapters involved: Choose K from a small set, so

that no one waits unnecessarily

= Many adapters involved: Choose K from a large set, so
everyone is likely to choose a different time to
transmit, and the collision will be resolved.



Exponential backoff example

* Assume A and B both have a new frame to transmit.
They both begin to transmit exactly on the same
time and collide.

* They both choose K from {0, 1}

» The possible outcomes:



Exponential backoff example (cont.)

(a) 0 another collision on round 2

(b) 0 1 0.25 A successful on round 2,
B successful on round 3

(c) 1 0 0.25 B successful on round 2,
A successful on round 3

(d) 1 1 0.25 another collision on round 3
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* L: minimal frame length
» T: the time it takes to transmit a frame of length L
 Require: T = RTT
T>2- 259 =25-107°
=“7200,000-103 ’
« L >(100-10°)-(2.5-107%) = 250 bit




Example: Ethernet’s minimal frame length

e Assume an Ethernet network with the following
properties (this is quite an old network):

Transmission rate 10Mbps

Built of coaxial cables of length up to 500m

Up to 4 repeaters allowed

Signal speed on coaxial cable 200,000 km/sec

Every repeater adds a delay of 3us

* We show why the minimal frame length in this network

a

O

a

O

a

is 64 bytes.
- 200 meters e
- >

(500 x 5) 2500 meters



Example: Ethernet’s minimal frame length

= J- =00 meters LL
- "

(200 x 5) 2500 meters
* 4 repeaters = 5 network segments

RTT =2(-——2—4+4-3-10°) =49-107%s
= 49us

« L >(10-10% -(4.9-107°) = 490 bits

» Take the next 8-power (which is both convenient and

adds a margin of safety):
L =512 bits = 64 bytes




