Multiple Access Links and Protocols

Two types of "links":
- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

Ideal Multiple Access Protocol

Broadcast channel of rate \(R \) bps

1. when one node wants to transmit, it can send at rate \(R \).
2. when \(M \) nodes want to transmit, each can send at average rate \(R/M \).
3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
4. simple
 - inexpensive to implement

MAC Protocols: a taxonomy

- Channel Partitioning
 - TDMA
 - FDMA
 - CDMA
- Random Access
 - ALOHA / Slotted ALOHA
- "Taking Turns"
 - polling by a master node (e.g. Bluetooth)
 - token-passing (e.g. FDDI)

Question from Exam (Deadline A', 2008/9)

• Utilisation = \[\frac{t \text{ time sending original packets}}{\text{total time sending data}} \]
• \(p_A, p_B \): probabilities for a successful transmission
• \(u_A, u_B \): channel utilizations
• Let \(X,Y \) be random variables counting how many stations transmitted in networks \(A,B \) respectively

\[X, Y \sim B(4, p) \]

1. \(p_A = \Pr[X = 1] \Pr[Y = 0] = 4p(1 - p)^3(1 - p)^4 = 4p(1 - p)^7 \)
2. \(u_A = p_A \)
3. \(p_B, u_B \) the same (symmetry)

• \(X \sim B(4, t) \)
• \(p_A = \Pr[X = 1] = 4t(1 - t)^3 \)
• \(u_A = \frac{1}{2}p_A = 2t(1 - t)^3 \)
• \(p_B, u_B \) the same (symmetry)

Question from Exam (Deadline A', 2008/9)

• The manager of network B requested more time slots. Since he was not satisfied with the result of the previous section, he increased the transmission power in his network.

\[\Pr[X = 1] = \frac{1}{2} \Pr[Y = 0] = 4(1 - p)^7 \]

• \(u_A = p_A \)
• \(p_B, u_B \) the same (symmetry)

Question from Exam (Deadline A', 2008/9)

• The manager of network A took exception to the solution of the previous section. They both moved to a TDMA network where time is divided into 8 slots, each one for a station.

\[\Pr[X = 1] = \frac{1}{2} \Pr[Y = 0] = 4t(1 - t)^3 \]

• \(u_A = \frac{1}{2}p_A = 2t(1 - t)^3 \)
• \(p_B, u_B \) the same (symmetry)

Question from Exam (Deadline A', 2008/9)

• Slotted Aloha does not work for network B. The manager of network A requested an improvement.

\[\Pr[X = 1] = \frac{1}{2} \Pr[Y = 0] = 4t(1 - t)^3 \]

• \(u_A = \frac{1}{2}p_A = 2t(1 - t)^3 \)
• \(p_B, u_B \) the same (symmetry)