Communication Networks
(0368-3030) / Spring 2011
The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner
Multiple Access Protocols

Kurose & Ross, Chapter 5.3 (5th ed.)
Multiple Access Links and Protocols

Two types of “links”:

- **point-to-point**
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host

- **broadcast** (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

![Diagram showing different types of access links and protocols]

- shared wire (e.g., cabled Ethernet)
- shared RF (e.g., 802.11 WiFi)
- shared RF (satellite)
- humans at a cocktail party (shared air, acoustical)
Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. when one node wants to transmit, it can send at rate R.
2. when M nodes want to transmit, each can send at average rate R/M.
3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
4. simple
 - inexpensive to implement
MAC Protocols: a taxonomy

- Channel Partitioning
 - TDMA
 - FDMA
 - CDMA
- Random Access
 - ALOHA / Slotted ALOHA
- “Taking Turns”
 - polling by a master node (e.g. Bluetooth)
 - token-passing (e.g. FDDI)
שאלה מבחן (מyecto 'א', 2008/9)

על אי קטן בלב האוקיינוס השקט הותקנו שתי רשתות Slotted Aloha, רשת A ורשת B. בכל אחת מהרשתות יש 4 תחנות. אורך חריצי הזמן של שתיהן הוא זהה, נקבע אותו כיחידת זמן אחת. שתיהן משתייכות לתחנות הבאות: תדר שידור A, תדר שידור B. כל שידור בשת אוחט עלולה לשבש את השידור האחר. נניח שכל שידור מمالיך ידוע תחנת השידור בשתי הרשתות משותפות."}

נסמן את האפשרויות של השידור בשתי הרשתות המסומנות במספרים מס' 1 ל-4.

(1)ether A משידור לשידור B
(2)ether A משידור לשידור A
(3)ether B משידור לשידור B
(4)ether B משידור לשידור A

btc(ether A לשידור B) = p
btc(ether A לשידור A) = p
btc(ether B לשידור B) = p
btc(ether B לשידור A) = p

btc(ether A לשידור A) = p
btc(ether B לשידור B) = p
btc(ether B לשידור A) = p
btc(ether A לשידור B) = p

btc(ether A לשידור B) = p
btc(ether A לשידור A) = p
btc(ether B לשידור B) = p
btc(ether B לשידור A) = p
• Utilization = \(\frac{\text{time sending original packets}}{\text{total time sending data}} \)
• \(p_A, p_B \): probabilities for a successful transmission
• \(u_A, u_B \): channel utilizations
• Let \(X, Y \) be random variables counting how many stations transmitted in networks \(A, B \) respectively
• \(X, Y \sim B(4, p) \)

ראשית, נניח שהחריצים של שתי הרשתות לא מסונכרנים.

• \(p_A = \Pr[X = 1] \Pr[Y = 0]^2 = 4p(1 - p)^3((1 - p)^4)^2 = 4p(1 - p)^{11} \)
• \(u_A = p_A \)
• \(p_B, u_B \) the same (symmetry)
ה民事ExecutionContext (沐訝, '08/9)

המנהל של רשת B סינכרן את חריצי הזמן של הרשת של עם רשת A.

- \(p_A = \Pr[X = 1] \Pr[Y = 0] = 4p(1 - p)^3(1 - p)^4 = 4p(1 - p)^7 \)
- \(u_A = p_A \)
- \(p_B, u_B \) the same (symmetry)
shanah minhah (M'avad 'A', 9/2008)

Manager Network B

Manager, not satisfied with the result of the previous section, increased the transmission power in his network.

Now, in the case of congestion between networks, with the probability of q the transmission of network B is increased, and with the probability of $1-q$ the two transmissions are mixed as before.

p_A, u_A - same as previous

$p_B = \Pr[Y = 1] \cdot [\Pr[X = 0] + q \Pr[X \geq 1]]$

$= 4p(1 - p)^3 \cdot [(1 - p)^4 + q(1 - (1 - p)^4)]$

$= 4p(1 - p)^3 \left((1 - q)(1 - p)^4 + q \right)$

$u_B = p_B$
Now the probability “that the station has something to transmit” is \(t = 1 - (1 - p)^8 \)

- \(p_A = t \)
- \(u_A = \frac{1}{2} p_A = \frac{1}{2} t \)
- \(p_B, u_B \) the same (symmetry)
שאלה ממבחון (מוצד על', 2008/9)

• מנהל רשת לא הסכים לוותר על Slotted Aloha במקומם, הוא הצעה לחלק את הריצי הזמני בין רשת A ורשת B החליפין. כי רשתแฮריה Slotted Aloha בחלילינו. כי רשת תממש הזמני של.

• \(t = 1 - (1 - p)^2 \)
• \(X \sim B(4, t) \)
• \(p_A = \Pr[X = 1] = 4t(1 - t)^3 \)
• \(u_A = \frac{1}{2} p_A = 2t(1 - t)^3 \)
• \(p_B, u_B \) the same (symmetry)